ON CERTAIN SPECIAL VECTOR FIELDS IN A FINSLER SPACE

S. C. RASTOGI AND PRADEEP BAJPAI
Department of Mathematics, Bhabha Institute of Technology, Kanpur (D) U.P. (India)

RECEIVED : 6 November, 2015
REVISED : 28 June, 2017
Concurrent vector fields in a Finsler space were defined and studied in (1950) by Tachibana [5]. In (1974), Matsumoto and Eguchi [1] continued this study further. Rastogiand Dwivedi [3] in (2004) studied the existence of concurrent vector fields in a Finsler space and found that the definition given earlier is untenable. This led to an alternative definition of concurrent vector fields [3] in a Finsler space. The purpose of the present paper is to define certain special vector fieldsin a Finsler space and study some of their properties vis-à-vis concurrent vector fields.

Introduction

1F^{n} be an n-dimensional Finsler space with metric function $L(x, y)$, metric tensor $g_{i j}$ (x, y), angular metric tensor $h_{i j}=g_{i j}-l_{i} l_{j}$, where $l_{i}=\Delta_{i} L$ and torsion tensor $C_{i j k}=(1 / 2) \Delta_{k} g_{i j}$. The h - and v-covariant derivatives of a tensor field V_{j}^{i} are respectively given by Rund [4] as

$$
\begin{align*}
& V_{j / k}^{i}=\delta_{k} V_{j}^{i}+\mathrm{V}^{m}{ }_{j} F_{m k}^{i}-V_{m}^{i} F^{m}{ }_{j k} \tag{1.1}\\
& V_{j / k}^{i}=\Delta_{k} V_{j}^{i}+V^{m}{ }_{j} C_{m k}^{i}-V^{i}{ }_{m}^{m}{ }_{j k} \tag{1.2}
\end{align*}
$$

and
where $\delta_{k}=Ə_{k}-N^{m}{ }_{k} \Delta_{m}, Ә_{j}$ and Δ_{j} respectively denote partial differentiation with respect to x^{j} and y^{j}.

The torsion tensors $A_{i j k}$ and $P_{i j k}$ are given as $A_{i j k}=L C_{i j k}, P_{i j k}=A_{i j k r r} l^{r}=A_{i j k / 0}, l^{i}=L^{-1} y^{i}$. In $F^{3} C_{i j k}$ is expressed as Matsumoto [2]:

$$
\begin{align*}
C_{i j k}= & C_{(1)} m_{i} m_{j} m_{k}-C_{(2)}\left(m_{i} m_{j} n_{k}+m_{j} m_{k} n_{i}+m_{k} m_{i} n_{j}\right) \\
& +C_{(3)}\left(m_{i} n_{j} n_{k}+m_{j} n_{k} n_{i}+m_{k} n_{i} n_{j}\right)+C_{(2)} n_{i} n_{j} n_{k} \tag{1.3}
\end{align*}
$$

Now we shall give the definition of concurrent vector fields [3]:
Definition 1. A vector field $X^{i}(x)$ in a Finsler space F^{n} is called concurrent vector field if it satisfies $X^{i}{ }_{/ k}=-\delta_{k}^{i}$ and $X^{i} A_{i j k}=\alpha h_{j k}$, where α is a scalar function of x and y and other terms have their usual meaning.

Two dimensional finsler space

 $m_{i / j}=0, l_{i / j}=L^{-1} m_{i} m_{j}$ and $m_{i / j}=-L^{-1} l_{i} m_{j}$. Let $X^{i}(x)$ be a vector field in F^{2}, which is a function of x alone, then we shall give following definition:

Def. (2.1). A vector field $X^{i}(x)$ in F^{2}, shall be called a special vector field of first kind, if it satisfies $X^{i}{ }_{j}=-\delta_{j}^{i}$ and

$$
\begin{equation*}
X^{i} h_{i j}=\Theta_{j} \tag{2.1}
\end{equation*}
$$

where Θ_{j} is a non-zero vector field in F^{2}.
If we assume

$$
\begin{equation*}
X^{i}=A l^{i}+B m^{i} \tag{2.2}
\end{equation*}
$$

where A and B are scalars, then we can observe

$$
\begin{equation*}
X^{i} l_{i}=A, X^{i} m_{i}=B \tag{2.3}
\end{equation*}
$$

Substituting the value of $h_{i j}$ in (2.1) and using equation (2.3), we can obtain

$$
\begin{equation*}
B m_{j}=\Theta_{j} \tag{2.4}
\end{equation*}
$$

From equation (2.3), we can observe that $A_{l j}=-l_{j}$ and $B_{l j}=-m_{j}$, which leads to $X^{i} A_{/ i}=-A$ and $X^{i} B_{/ i}=-B$. Also equation (2.4) can alternatively be expressed as $B B_{/ j}=-\Theta_{j}$ or $B^{2}{ }_{j j}=-2 \Theta_{j}$. By taking h-covariant differentiation of equation (2.1), we can easily obtain

$$
\begin{equation*}
\Theta_{j / k}=-h_{k j}, \tag{2.5}
\end{equation*}
$$

which shows that $\Theta_{j / k}$ is symmetric in j and k. Also it is easy to observe

$$
\Theta_{j / k} l^{j}=0, \Theta_{j / k} k^{k}=0, \Theta_{j / k} m^{j}=-m_{k}, \Theta_{j / k} m^{k}=-m_{j} \text { and } \Theta_{j / k / h}=0
$$

By taking v-covariant derivative of (2.3), we get $A_{/ / j}=L^{-1} B m_{j}$ and $B_{/ / j}=\left(B C-L^{-1} A\right) m_{j}$, showing that $A_{/ / j} l^{j}=0, B_{/ / j} l^{j}=0, A_{/ / j} m^{j}=B L^{-1}$ and $B_{/ / j} m^{j}=B C-L^{-1} A$. Taking v-covariant derivative of (2.1) we get

$$
\begin{equation*}
\Theta_{j / k}=\left(B C-L^{-1} A\right) m_{j} m_{k}-L^{-1} B l_{j} m_{k} \tag{2.6}
\end{equation*}
$$

which gives $\Theta_{j / k} l^{j}=-L^{-1} B m_{k}, \Theta_{j / k} l^{k}=0, \Theta_{j / / k} m^{j}=\left(B C-L^{-1} A\right) m_{k}$ and $\Theta_{j / k} m^{k}=\left(B C-L^{-1} A\right)$ $m_{j}-L^{-1} B l_{j}$. Further from equation (2.6) we can obtain

$$
\begin{equation*}
\Theta_{j / k}-\Theta_{k / / j}=L^{-1} B\left(l_{k} m_{j}-l_{j} m_{k}\right) \tag{2.7}
\end{equation*}
$$

Hence we have:
Theorem (2.1). In a 2-dimensional Finsler space F^{2}, a special vector field of first kind, $X^{i}(x)$ is such that $\Theta_{j / k}$ is symmetric in j and k, while $\Theta_{j / k}$ is non- symmetric in j and k and satisfies (2.7).

Now $X^{i} C_{i j k}=X^{i} C m_{i} m_{j} m_{k}=X^{i} C h_{i j} m_{k}$, therefore by virtue of (2.1), we get

$$
\begin{equation*}
X^{i} A_{i j k}=L B C h_{j k} \tag{2.8}
\end{equation*}
$$

Comparing equation (2.8) with definition 1 , we can observe that $\alpha=L B C$. Hence we have:

Theorem 2.2. In a two dimensional Finsler space F^{2}, a special vector field of first kind is also a concurrent vector field, whose coefficient is given by $\alpha=L B C$.

Three dimensional finsler space

In a three dimensional Finsler space F^{3}, following Matsumoto [2], we have $g_{i j}=l_{i} l_{j}+$ $m_{i} m_{j}+n_{i} n_{j}, h_{i j}=m_{i} m_{j}+n_{i} n_{j}, l_{i / j}=0, m_{i / j}=n_{i} h_{j}, n_{i / j}=-m_{i} h_{j}, l_{i / j}=L^{-1} h_{i j}, m_{i / j}=L^{-1}\left(-l_{i} m_{j}+n_{i} v_{j}\right)$ and $n_{i / j}=-L^{-1}\left(l_{i} n_{j}+m_{i} v_{j}\right)$. Let $X^{i}(x)$ be a vector field in F^{3}, which is a function of x alone, then we give the following definition:

Def. (3.1). A vector field $X^{i}(x)$ in F^{3}, shall be called a special vector field of first kind, if it satisfies $X_{l j}^{i}=-\delta_{j}^{i}$ and

$$
\begin{equation*}
X^{i} h_{i j}=\varphi_{j}, \tag{3.1}
\end{equation*}
$$

where φ_{j} is a vector field in F^{3}.
If we assume

$$
\begin{equation*}
X^{i}=A l^{i}+B m^{i}+D n^{i}, \tag{3.2}
\end{equation*}
$$

where A, B and D are scalars, we can observe

$$
\begin{equation*}
X^{i} l_{i}=A, X^{i} m_{i}=B, X^{i} n_{i}=D \tag{3.3}
\end{equation*}
$$

Substituting the value of h_{ij} in equation (3.1) and using (3.3), we can obtain

$$
\begin{equation*}
B m_{j}+D n_{j}=\varphi_{j}, \tag{3.4}
\end{equation*}
$$

From equations (3.2) and (3.3), we can observe that $A_{l j}=-l_{j}, B_{l j}=D h_{j}-m_{j}$ and $D_{l j}=-\left(B h_{j}+n_{j}\right)$, which lead to $X^{i} A_{I I}=-A, X^{i} B_{I I}=D h_{i} X^{i}-B$ and $X^{i} D_{I I}=-\left(B h_{i} X^{i}+D\right)$. From these results and equation (3.4), we can easily obtain

$$
\begin{equation*}
\left(B^{2}+D^{2}\right)_{l j}+2 \varphi_{j}=0, \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(B^{2}+D^{2}\right)_{/ 0}=0,\left(B^{2}+D^{2}\right)_{j j} m^{j}+2 B=0,\left(B^{2}+D^{2}\right)_{j j} n^{j}+2 D=0 . \tag{3.6}
\end{equation*}
$$

Hence we have:
Theorem (3.1). In an F^{3}, a special vector field of first kind is such that scalars B and D satisfy equations (3.5) and (3.6).

Taking h-covariant derivative of equation (3.1), we get $\varphi_{j / k}=-h_{k j}$, showing that $\varphi_{j / k}$ is symmetric in j and k, which implies $\varphi_{j / k / h}-\varphi_{j / h / k}=0$ or alternatively

$$
\begin{equation*}
K_{j h k}^{t} \varphi_{t}+\left(\Delta_{t} \varphi_{j}\right) K_{p h k}^{t} y^{p}=0 . \tag{3.7}
\end{equation*}
$$

Taking v-covariant derivative of (3.3) we get

$$
\begin{aligned}
& A_{/ / j}=L^{-1} \varphi_{j}, B_{/ / j}=\left(C_{(1)} B-C_{(2)} D-L^{-1} A\right) m_{j}+\left(C_{(3)} D-C_{(2)} B\right) n_{j}+L^{-1} D v_{j}, \\
& D_{/ / j}=\left(C_{(3)} D-C_{(2)} B\right) m_{j}+\left(\left(C_{(3)} B+C_{(2)} D-L^{-1} A\right) n_{j}-L^{-1} B v_{j},\right.
\end{aligned}
$$

which show that
$A_{\| / j} j^{i}=0, B_{/ / j} j^{j}=0, D_{/ / j} l^{j}=0, A_{/ / j} m^{j}=L^{-1} B, B_{/ / j} m^{j}=C_{(1)} B-C_{(2)} D-L^{-1}\left(A-D v_{2 / 32}\right)$, $\left.\left.D_{l / j} m^{j}=\left(C_{(3)} D-C_{(2)} B\right)-L^{-1} D v_{2}\right)_{32}, A_{/ / j} n^{j}=L^{-1} D, B_{/ / j} n^{j}=\left(C_{(3)} D-C_{(2)} B\right)+L^{-1} D v_{2}\right)_{33}$, $\left.D_{l / j} n^{j}=C_{(3)} B+C_{(2)} D-L^{-1}\left(A+B \mathrm{v}_{2}\right)_{33}\right)$

Taking v-covariant derivative of (3.1), we can obtain on simplification

$$
\begin{align*}
\varphi_{j / k}= & m_{j} m_{k}\left(C_{(1)} B-C_{(2)} D\right)+n_{j} n_{k}\left(C_{(3)} B+C_{(2)} D\right) \\
& +\left(m_{j} n_{k}+m_{k} n_{j}\right)\left(C_{(3)} D-C_{(2)} B\right)-L^{-1}\left(\varphi_{k} l_{j}+A h_{j k}\right), \tag{3.8}
\end{align*}
$$

which leads to

$$
\begin{equation*}
\varphi_{j / k}-\varphi_{k / j}=L^{-1}\left(\varphi_{j} l_{k}-\varphi_{k} l_{j}\right) \tag{3.9}
\end{equation*}
$$

Hence we have:
Theorem (3.2). In a three dimensional Finsler space F^{3}, a special vector field of first kind, $X^{i}(x)$ is such that $\varphi_{j / k}$ is symmetric in j and k, while $\varphi_{j / k}$ is non-symmetric in j and k and satisfies equation (3.9).

Multiplying equation (1.3) by X^{i}, we get

$$
\begin{align*}
X^{i} C_{i j k}=\left(C_{(1)} B-C_{(2)} D\right) & m_{j} m_{k}+\left(C_{(3)} D-C_{(2)} B\right)\left(m_{j} n_{k}+m_{k} n_{j}\right) \\
& +\left(C_{(3)} B+C_{(2)} D\right) n_{j} n_{k} . \tag{3.10}
\end{align*} \ldots
$$

In case $X^{i}(x)$ is a concurrent vector field in F^{3}, we have Rastogi and Dwivedi [3] $X^{i} C_{i j k}=\alpha L^{-1} h_{j k}$. Now comparing equation (3.10) with this value we get

$$
\begin{equation*}
\alpha L^{-1}=C_{(1)} B-C_{(2)} D=C_{(3)} B+C_{(2)} D \text { and } C_{(3)} D=C_{(2)} B \tag{3.11}
\end{equation*}
$$

From equation (3.11), we can obtain

$$
\begin{equation*}
\left(C_{(1)}-C_{(3)}\right) C_{(3)}=2 C_{(2)}^{2} \tag{3.12}
\end{equation*}
$$

Hence we have:
Theorem (3.3). In a Finsler space F^{3}, if $X^{i}(x)$ is both a special vector field of first kind and a concurrent vector field, it satisfies $2 \alpha=L B C$ and other coefficients in torsion tensor satisfy (3.12).

References

1. Matsumoto, M. and Eguchi, K., Finslerspaces admitting concurrent vector field, Tensor, N.S., 28, 239-249 (1974).
2. Matsumoto, M., Foundations of Finsler Geometry and special Finsler spaces, Kaiseisha Press. Otsu, Japan (1986).
3. Rastogi, S.C. and Dwivedi, A.K., On the existence of concurrent vector fields in a Finsler space, Tensor, N.S., 65, 48-54(2004).
4. Rund, H., The differential geometry of Finsler spaces, Springer-Verlag (1959).
5. Tachibana, S., On Finsler spaces which admit concurrent vector field, Tensor, N.S., 1, 1-5 (1950).
