Acta Ciencia Indica, Vol. XLIII M, No. 2, 149 (2017)

ON CERTAIN SPECIAL VECTOR FIELDS IN A FINSLER
SPACE

S. C. RASTOGI AND PRADEEP BAJPAI
Department of Mathematics, Bhabha Institute of Technology, Kanpur (D) U.P. (India)
RECEIVED : 6 November, 2015
REVISED : 28 June, 2017
Concurrent vector fields in a Finsler space were defined
and studied in (1950) by Tachibana [5]. In (1974),
Matsumoto and Eguchi [1] continued this study further.
Rastogiand Dwivedi [3] in (2004) studied the existence of
concurrent vector fields in a Finsler space and found that
the definition given earlier is untenable. This led to an
alternative definition of concurrent vector fields [3] in a
Finsler space. The purpose of the present paper is to
define certain special vector fieldsin a Finsler space and
study some of their properties vis-a-vis concurrent vector
fields.

INTRODUCTION

et F" be an n-dimensional Finsler space with metric function L (x, y), metric tensor g;
(x, ), angular metric tensor h; = g; — [i;, where [; = A; L and torsion tensor Cy;, = (1/2)Asg;;.
The /- and v-covariant derivatives of a tensor field 7'; are respectively given by Rund [4] as

Vj/k = SkVJ + ijpn1k - Vimijk e (1 . 1)
and V///k = Alej + V'"jCi,,,k — Vthm/A cee (1 2)
where 6= O — N"A,,, ©; and A, respectively denote partial differentiation with respect to ¥
and y.

The torsion tensors A, and Py are given as A = LCy, Py = Ayl = Ajjios r=r" y. In
F3Ci,»k is expressed as Matsumoto [2]:

Cir = Caymmmy, — Coy(mmny + mmyn; + my mn;)
+ Coymmmy + mpn; + mnn;) + Copnny ... (1.3)

Now we shall give the definition of concurrent vector fields [3]:

Definition 1. A vector field X' (x) in a Finsler space F" is called concurrent vector field if
it satisfies X'y = — &'y and X'4,; = ahy, where o is a scalar function of x and y and other terms
have their usual meaning.

TWO DIMENSIONAL FINSLER SPACE

E! is known that in a two dimensional Finsler space F*, g =Ll + mmy, hyy=mm;, l;; =0,
my; =0, Ly, = L! mm; and m;; = — L! Lim;. Let X' (x) be a vector field in Fz, which is a function
of x alone, then we shall give following definition:
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Def. (2.1). A vector field X (x) in F?, shall be called a special vector field of first kind, if
it satisfies X', =— &', and
Xh; =6, L(2.1)
where ©; is a non-zero vector field in F~.

If we assume

X=AI+Bm' .. (22)
where 4 and B are scalars, then we can observe
Xl,=A4,X m;=B .. (23)
Substituting the value of /; in (2.1) and using equation (2.3), we can obtain
Bm;=0; .. (24
From equation (2.3), we can observe that 4; = — [, and B; = — m;, which leads to

X 4;=—Aand X' B; = — B. Also equation (2.4) can alternatively be expressed as B B,=-6;

or Bz/j =—20;. By taking A-covariant differentiation of equation (2.1), we can easily obtain
O = — hy, ... (2.5
which shows that ©; is symmetric in j and k. Also it is easy to observe

ej/kl/ = O, ej/klk = 0, ej/kmi =—my, ej/kmk =—m; and Gj/k/,, =0.

By taking v-covariant derivative of (2.3), we get 4, = L'B m; and B; = (BC — L'4) m,
showing that 4,/ = 0, B/ =0, Am' = B L' and Bm =B C - L'A. Taking v-covariant
derivative of (2.1) we get

=B C—L"'A) mm,—L" Blmy, .. (2.6)

which gives 8 =~ L' B my, ©,,l" =0, 8y’ = (B C— L' 4) m; and ©;,m" = (B C — L"'4)
m;— L'B l;. Further from equation (2.6) we can obtain
O — Ouy=L'B (lym;— Lmy) L 27)

Hence we have:

Theorem (2.1). In a 2-dimensional Finsler space F* a special vector field of first kind,
X’(x) is such that ©;, is symmetric in j and k, while ©;;; is non- symmetric in j and k and
satisfies (2.7).

Now XC,—,k =XC mmmy = Xc h;my, therefore by virtue of (2.1), we get

X4 =LBC hy, .. (2.8)

Comparing equation (2.8) with definition 1, we can observe that oo = LBC. Hence we
have:

Theorem 2.2. In a two dimensional Finsler space F~, a special vector field of first kind is
also a concurrent vector field, whose coefficient is given by a = LBC.
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THREE DIMENSIONAL FINSLER SPACE

n a three dimensional Finsler space F°, following Matsumoto [2], we have g =l +
mm; + nn;, h,, mm; + nny, Ly =0, my; = nhy, ny; = —mhy, l,//, L! h,,, my; =L~ ( Lim;+ n;v))
and Ny = - L' n; + m;v;). Let X' (x) be a vector field in F°, which is a function of x alone,
then we give the following definition:

Def. (3.1). A vector field X' (x) in F°, shall be called a special vector field of first kind, if
it satisfies X', = — &', and

Xh;= o .. (3.1
where ¢ is a vector field in F°.

If we assume

X=A1+Bm'+Dn, ...(32)
where A, B and D are scalars, we can observe
X L,=A4,X m;=B,Xn;=D ...(33)
Substituting the value of h;; in equation (3.1) and using (3.3), we can obtain
Bm;+Dn;= g, ..(34)
From equations (3.2) and (3.3), we can observe that 4; = — [, B; = D h; — m; and

D;=—(B h;+ my), which lead to X’ A;=— A4, X B;=D h; X' — BandX'D/]—f(Bh X + D).
From these results and equation (3.4), we can easily obtain

(B’ + DY), +2¢,=0, .. (3.5
and (B> + D%,0=0, (B + D*)m + 2B =0, (B*+ D} + 2D = 0. ... (3.6)
Hence we have:

Theorem (3.1). In an F°, a special vector field of first kind is such that scalars B and D
satisfy equations (3.5) and (3.6).

Taking h-covariant derivative of equation (3.1), we get ¢; = — hy;, showing that @y is
symmetric inj and k, which implies @, — @y = 0 or alternatively
Ko, + (A09) K ¥ = 0. .. (3.7

Taking v-covariant derivative of (3.3) we get
Ayj=L" ¢y Bjy=(Coy B=Coy D—L"'A) mj+ (C3y D~ Coy By m; + L™ D v,
D//j = (C(3) D — C(z) B) mj + ((C(3) B + C(z) D — L71 A) nj — L71 B Vj,
which show that

A//Jl] 0 B//jl] 0 D//Jll 0 A//jm’ L B B//jm’ C(l)B C(z)D L (A D V2)32)
Dym' = (C3D — C(z)B) — L'D v, A =L 'D, Byn' = (CaD — Cp)B) + L' Dvy)ss,
Dy = CB+ CpD — L' (4 + B vy)33)

Taking v-covariant derivative of (3.1), we can obtain on simplification
Qi = mmy (Cay B — CyD) + njny (C3),B + Cp)D)
+ (mnyc+ myny) (CoyD = CayB) = L (@aly+ A ), ...(3.8)
which leads to

Qi — Prryj = L' (@i — 0lp) ...(3.9)
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Hence we have:

~ Theorem (3.2). In a three dimensional Finsler space F* 3, a special vector field of first kind,
X' (x) is such that ¢y is symmetric in j and &, while @ is non-symmetric in j and k and
satisfies equation (3.9).

Multiplying equation (1.3) by X", we get
XCy=(Cay B~ Coy D) mymy+ (CyD — Cay B) (mymyc + mymy)
+(Cg) B + C) D) njny. ... (3.10)

~ In case X' (x) is a concurrent vector field in F°, we have Rastogi and Dwivedi [3]
XCpy=uq L’lhjk. Now comparing equation (3.10) with this value we get

al= CiyB-CoD=C3B +CpDand C3D=Cp B ... (3.11)
From equation (3.11), we can obtain
(Ciy— Ci) Cy =2Cp) ...(3.12)

Hence we have:

Theorem (3.3). In a Finsler space F°, if X' (x) is both a special vector field of first kind
and a concurrent vector field, it satisfies 200 = LBC and other coefficients in torsion tensor
satisfy (3.12).
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