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Concurrent vector fields in a Finsler space were defined 
and studied in (1950) by Tachibana [5]. In (1974), 
Matsumoto and Eguchi [1] continued this study further. 
Rastogiand Dwivedi [3] in (2004) studied the existence of 
concurrent vector fields in a Finsler space and found that 
the definition given earlier is untenable. This led to an 
alternative definition of concurrent vector fields [3] in a 
Finsler space. The purpose of the present paper is to 
define certain special vector fieldsin a Finsler space and 
study some of their properties vis-à-vis concurrent vector 
fields. 

 

INTRODUCTION 

Let Fn be an n-dimensional Finsler space with metric function L (x, y), metric tensor gij 

(x, y), angular metric tensor hij = gij – lilj, where li = Δi L and torsion tensor Cijk = (1/2)Δkgij. 
The h- and v-covariant derivatives of a tensor field Vi

j are respectively given by Rund [4] as 

     Vi
j/k = δkV

i
j + Vm

jF
i
mk – Vi

mFm
jk … (1.1) 

and     Vi
j//k = ΔkV

i
j + Vm

jC
i
mk – Vi

mCm
jk  … (1.2) 

where δk= Ək – Nm
kΔm, Əj and Δj respectively denote partial differentiation with respect to xj 

and yj.   

The torsion tensors Aijk and Pijk are given as Aijk = LCijk, Pijk = Aijk/rl
r = Aijk/0, l

i = L–1 yi. In 
F3Cijk is expressed as Matsumoto [2]: 

     Cijk = C(1)mimjmk – C(2)(mimjnk + mjmkni + mk minj) 

                + C(3)(minjnk + mjnkni + mkninj) + C(2)ninjnk … (1.3) 

Now we shall give the definition of concurrent vector fields [3]: 

Definition 1.  A vector field Xi (x) in a Finsler space Fn is called concurrent vector field if 
it satisfies Xi

/k = – δi
k and XiAijk = αhjk, where α is a scalar function of x and y and other terms 

have their usual meaning. 

TWO DIMENSIONAL FINSLER SPACE 

It is known that in a two dimensional Finsler space F2, gij = lilj + mimj, hij = mimj, li/j = 0, 

mi/j = 0, li//j = L–1 mimj and mi//j = – L–1 limj. Let Xi (x) be a vector field in F2, which is a function 
of x alone, then we shall give following definition: 
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Def. (2.1). A vector field Xi (x) in F2, shall be called a special vector field of first kind, if 
it satisfies Xi

/j = – δi
j and 

     Xihij = Ɵj … (2.1) 

where Ɵj is a non-zero vector field in F2.  

If we assume 

     Xi = A li + B mi                          … (2.2) 

where A and B are scalars, then we can observe 

     Xili = A, Xi mi = B                          … (2.3)                     

Substituting the value of hij in (2.1) and using equation (2.3), we can obtain 

     B mj = Ɵj … (2.4) 

From equation (2.3), we can observe that A/j = – lj and B/j = – mj, which leads to               

Xi A/i = – A and Xi B/i = – B. Also equation (2.4) can alternatively be expressed as B B/j = – Ɵj 

or B2
/j = – 2Ɵj. By taking h-covariant differentiation of equation (2.1), we can easily obtain 

     Ɵj/k = – hkj,                            … (2.5) 

which shows that Ɵj/k is symmetric in j and k. Also it is easy to observe 

   Ɵj/kl
j = 0, Ɵj/kl

k = 0, Ɵj/km
j = – mk, Ɵj/km

k = – mj and Ɵj/k/h = 0. 

By taking v-covariant derivative of (2.3), we get A//j = L–1 B mj and B//j = (BC – L–1A) mj, 
showing that A//jl

j = 0, B//jl
j = 0, A//jm

j = B L–1 and B//jm
j = B C – L–1A. Taking v-covariant 

derivative of (2.1) we get 

     Ɵj//k = (B C – L–1A) mjmk – L–1 B ljmk , … (2.6) 

which gives Ɵj//kl
j = – L–1 B mk, Ɵj//kl

k = 0, Ɵj//km
j = (B C – L–1A) mk and Ɵj//km

k = (B C – L–1A) 

mj – L–1 B lj. Further from equation (2.6) we can obtain 

     Ɵj//k – Ɵk//j = L–1B (lkmj –  ljmk)                                  … (2.7) 

Hence we have: 

Theorem (2.1). In a 2-dimensional Finsler space F2, a special vector field of first kind, 

Xi(x) is such that Ɵj/k is symmetric in j and k, while Ɵj//k is non- symmetric in j and k and 

satisfies (2.7). 

Now XiCijk = Xi C mimjmk = XiC hijmk, therefore by virtue of (2.1), we get 

     XiAijk = LBC hjk … (2.8) 

Comparing equation (2.8) with definition 1, we can observe that α = LBC. Hence we 
have: 

Theorem 2.2. In a two dimensional Finsler space F2, a special vector field of first kind is 
also a concurrent vector field, whose coefficient is given by α = LBC.      
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THREE DIMENSIONAL FINSLER SPACE 

In a three dimensional Finsler space F3, following Matsumoto [2], we have gij = lilj + 

mimj + ninj, hij = mimj + ninj, li/j = 0, mi/j = nihj, ni/j = – mihj, li//j = L–1 hij, mi//j = L–1(– limj + nivj) 
and ni//j = – L–1 (linj + mivj). Let Xi (x) be a vector field in F3, which is a function of x alone, 
then we give the following definition: 

Def. (3.1). A vector field Xi (x) in F3, shall be called a special vector field of first kind, if 
it satisfies Xi

/j = – δi
j and  

     Xihij = φj,    … (3.1) 

where φj is a vector field in F3. 

If we assume   

     Xi = A li + B mi + Dni,    … (3.2) 

where A, B and D are scalars, we can observe 

     Xi li = A, Xi mi = B, Xini = D   … (3.3) 

Substituting the value of hij in equation (3.1) and using (3.3), we can obtain 

     B mj + D nj = φj,                                                               … (3.4) 

From equations (3.2) and (3.3), we can observe that A/j = – lj, B/j = D hj – mj and              
D/j = – (B hj + nj), which lead to Xi A/I = – A, Xi B/I = D hi X

i – B and Xi D/I = – (B hi X
i + D). 

From these results and equation (3.4), we can easily obtain 

     (B2 + D2)/j + 2φj = 0,    … (3.5)  

and   (B2 + D2)/0 = 0, (B2 + D2)/jm
j + 2B = 0, (B2 + D2)/jn

j + 2D = 0.        … (3.6) 

Hence we have: 

Theorem (3.1). In an F3, a special vector field of first kind is such that scalars B and D 
satisfy equations (3.5) and (3.6). 

Taking h-covariant derivative of equation (3.1), we get φj/k = – hkj, showing that φj/k is 
symmetric in j and k, which implies φj/k/h – φj/h/k = 0 or alternatively 

     Kt
jhkφt + (Δtφj) K

t
phky

p = 0.                                          … (3.7) 

Taking v-covariant derivative of (3.3) we get 

   A//j = L–1 φj, B//j = (C(1) B – C(2) D – L–1A) mj + (C(3) D – C(2) B) nj + L–1 D vj, 

   D//j = (C(3) D – C(2) B) mj + ((C(3) B + C(2) D – L–1 A) nj – L–1 B vj, 

which show that 

A//jl
j = 0, B//jl

j = 0, D//jl
j = 0, A//jm

j = L–1 B, B//jm
j = C(1)B – C(2)D – L–1 (A – D v2)32),       

D//jm
j = (C(3)D – C(2)B) – L–1D v2)32, A//jn

j = L–1D, B//jn
j = (C(3)D – C(2)B) + L–1 Dv2)33,          

D//jn
j = C(3)B + C(2)D – L–1 (A + B v2)33) 

Taking v-covariant derivative of (3.1), we can obtain on simplification 

     φj//k = mjmk (C(1) B – C(2)D) + njnk (C(3)B + C(2)D)  

                  + (mjnk + mknj) (C(3)D – C(2)B) – L–1(φklj + A hjk),   …(3.8) 

which leads to 

     φj//k – φk//j = L–1 (φjlk – φklj)    … (3.9) 
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Hence we have: 

Theorem (3.2). In a three dimensional Finsler space F3, a special vector field of first kind, 
Xi (x) is such that φj/k is symmetric in j and k, while φj//k is non-symmetric in j and k and 
satisfies equation (3.9). 

Multiplying equation (1.3) by Xi, we get 

     XiCijk = (C(1) B – C(2) D) mjmk + (C(3)D – C(2) B) (mjnk + mknj)  

                                              + (C(3) B + C(2) D) njnk. … (3.10) 

In case Xi (x) is a concurrent vector field in F3, we have Rastogi and Dwivedi [3]              
XiCijk = α L–1hjk. Now comparing equation (3.10) with this value we get  

   α L–1 = C(1) B – C(2) D = C(3) B  + C(2) D and C(3) D = C(2) B      … (3.11) 

From equation (3.11), we can obtain 

            (C(1) – C(3)) C(3) = 2C(2)
2                                                               … (3.12) 

Hence we have: 

Theorem (3.3). In a Finsler space F3, if Xi (x) is both a special vector field of first kind 
and a concurrent vector field, it satisfies 2α = LBC and other coefficients  in torsion tensor  
satisfy (3.12). 
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