A STUDY OF CERTAIN NEW CURVES IN AN EUCLIDEAN SPACE OF THREE DIMENSIONS-III

BAJPAI PRADEEP, RASTOGI, S.C.
Department of Mathematics, Bhabha Institute of Technology, Kanpur (D) U.P. (India)

RECEIVED : 24 September, 2015
Analogous to λ_{0}-curves and λ_{N}-curves defined by Bajpai and Rastogi $[5,6]$, in this paper we have defined a new curve called λ_{R}-curve, which is such that its rectifying plane contains the vector $\mathrm{d}^{3} \lambda^{i} / \mathrm{ds}^{3}$, where λ^{i} are the contra-variant components of a unit vector in the direction of the line 1 of the congruence passing through a point P. We have studied some curvature properties of this curve in an Euclidean space of three dimensions visa-a-vis other wellknown curves.

Preliminaries

Let $S: x^{i}=x^{i}\left(u^{\alpha}\right),(i=1,2,3$ and $\alpha=1,2)$, be the surface of reference of a rectilinear congruence, a line 1 of which is given by the direction cosines

$$
\begin{equation*}
\lambda^{i}=\lambda^{i}\left(u^{\alpha}\right), \lambda^{i} \cdot \lambda^{I}=1 . \tag{1.1}
\end{equation*}
$$

We assume that x^{i} and λ^{i} are continuous along with their partial derivatives up to the required order. At any point $P\left(x^{i}\right)$ of S, λ^{i} is expressible as [3]

$$
\begin{equation*}
\lambda^{i}=p^{\alpha} x^{i},{ }_{\alpha}+q X^{i}, \tag{1.2}
\end{equation*}
$$

where p^{α} are the contra-variant components of a vector is S at P and q is a scalar function, X^{i} are the direction cosines of the normal to S at P and $x^{i}{ }_{,}$denotes the covariant derivative of x^{i} with respect to u^{α} based on the fundamental tensor of $S, g_{\alpha \beta}=x^{i}, \alpha \cdot x^{i},{ }_{\beta}$.

The Gauss and Weingarten equations Eisenhart [2] are given by $x^{i}{ }_{, \alpha \beta}=d_{\alpha \beta} X^{i}, X_{, \alpha}^{i}=-d_{\alpha}{ }^{\delta}$ $x^{i},{ }_{\delta}$, where $d_{\alpha \beta}$ is the second fundamental tensor of the surface S .

Let us consider a curve C : $x^{i}=x^{i}(s)$ on S, then the intrinsic derivative of $x^{i}, d x^{i} / d s$ and $d^{2} x^{i} / d s^{2}$ are expresses as

$$
\begin{align*}
& x^{\prime i}=d x^{i} / d s=x^{i},{ }_{\alpha} u^{\prime \alpha}, x^{\prime \prime}=d^{2} x^{i} / d s^{2}=\rho^{\alpha} x^{i},{ }_{\alpha}+X^{i} k_{n}=k \beta^{I} \tag{1.3}\\
& x^{\prime \prime \prime}=d^{3} x^{i} / d s^{3}=\left(\rho^{\alpha},{ }_{\beta} k_{n} d_{\beta \theta} g^{\theta \alpha}\right) x^{i},{ }_{\alpha} u^{\prime \beta}+\left(k_{n},{ }_{\beta}+\rho^{\alpha} d_{\alpha \beta}\right) X^{i} u^{\prime \beta}, \tag{1.4}
\end{align*}
$$

and
where, primes indicate the differentiation with respect to are-length s, p^{α} are the components of the geodesic curvature vector of the curves C and k_{n} is the normal curvature of the surface in the direction of curves C [2].

Some intrinsic derivatives

If we consider a vector λ^{i} in the direction of the curves of the congruence- λ, following intrinsic derivatives can be obtained:
where

$$
\begin{equation*}
\lambda^{i}=d \lambda^{i} / d s=\lambda^{i},{ }_{\alpha} u^{\prime \alpha}=\left(\mu_{\alpha}^{\gamma} x^{i},{ }_{\gamma}+v_{\alpha} X^{i}\right) u^{\prime \alpha} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{\alpha}^{\gamma}=p^{\gamma},{ }_{\alpha}-q d_{\alpha \beta} g^{\beta \gamma}, v_{\alpha}=q,_{\alpha}+p^{\beta} d_{\alpha \beta} . \tag{2.2}
\end{equation*}
$$

For a normal congruence $\mu_{\alpha}^{\gamma}=-d^{\gamma}{ }_{\alpha}$ and $v_{\alpha}=0$, while for a congruence formed by tangents to a one parameter family of curves $\mu^{\gamma}=p^{\gamma},{ }_{\alpha}$ and $v_{\alpha}=p^{\beta} \mathrm{d}_{\alpha \beta}$. We know that λ^{i}. $\lambda^{i}=1$, therefore we can obtain $\lambda^{i} \cdot \lambda^{i},{ }_{\alpha}=0$, which gives $p_{\gamma} \mu^{\gamma}{ }_{\alpha}+q v_{\alpha}=0$.

Differentiating $\lambda^{i},{ }_{\alpha}$ covariantly with respect to $u^{\prime \beta}$, we get

$$
\begin{equation*}
\lambda_{, \alpha \beta}^{i}=M_{\alpha \beta}^{\prime} x_{, \gamma}^{i}+N_{\alpha \beta} X^{i}, \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{\alpha \beta}^{\gamma}=\mu_{\alpha, \beta}^{\gamma}-v_{\alpha} d_{\beta \theta} g^{\theta \gamma}, N_{\alpha \beta}=v_{\alpha, \beta}+\mu_{\alpha}^{\gamma} d_{\gamma \beta} . \tag{2.4}
\end{equation*}
$$

The intrinsic derivative of $d \lambda^{i} / d s$, represented by $\lambda^{\prime i}$ along C can be obtained as follows:
such that

$$
\begin{align*}
& \lambda^{\prime \prime i}=\left(M_{\alpha \beta}^{\prime} u^{\prime \alpha} u^{\prime \beta}+\mu_{\alpha}^{\gamma} u^{\prime \prime \alpha}\right) x^{i},{ }_{\gamma}+\left(N_{\alpha \beta} u^{\prime \alpha} u^{\beta}+v_{\alpha} u^{\prime \prime \alpha}\right) X^{i} . \tag{2.5}\\
& p_{\gamma} M_{\alpha \beta}^{\gamma}+q N_{\alpha \beta}+\mu_{\alpha \delta} u_{\beta}^{\delta}+v_{\alpha} v_{\beta}=0 . \tag{2.6}
\end{align*}
$$

From equation (2.3) we can get

$$
\begin{equation*}
\lambda^{i}{ }_{\alpha \beta \gamma}=\left(M_{\alpha \beta, \gamma}^{\theta}-N_{\alpha \beta} d_{\gamma \delta} g^{\delta \theta}\right) x_{,}^{i}+X^{i}\left(M_{\alpha \beta}^{\theta} d_{\theta \gamma}+N_{\alpha \beta, \gamma}\right) . \tag{2.7}
\end{equation*}
$$

such that $\quad q\left\{M_{\alpha \beta}^{\theta}\left(q d_{\theta \gamma}+\mu_{\theta \gamma}-p_{\theta, \gamma}\right)+M_{\beta \gamma}^{\theta} \mu_{\theta \alpha}-M_{\beta \theta, \gamma} \mu_{\alpha}^{\theta}\right\}$

$$
\begin{equation*}
-\mu_{\alpha}^{\theta} \mu_{\beta}^{\varphi} d_{\theta \gamma} p_{\varphi}-N_{\alpha \beta}\left(\mu_{\gamma}^{\theta} p_{\theta}+q p^{\theta} d_{\theta \gamma}+q q,{ }_{\gamma}\right)=0 \tag{2.8}
\end{equation*}
$$

The intrinsic derivative of $d^{2} \lambda i / d s^{2}$ along C which is represented by $\lambda^{\prime \prime \prime} i$ can be obtained in the following form

$$
\begin{equation*}
\lambda^{\prime^{\prime \prime} i}=\left(x^{i}, \gamma A^{\gamma}+B X^{i}\right), \tag{2.9}
\end{equation*}
$$

where

$$
\begin{align*}
& A^{\gamma}=\left[\mu_{\alpha}^{\gamma} u^{\prime \prime \prime} \alpha+u^{\prime \prime \alpha} u^{\prime \beta}\left(2 M_{\alpha \beta}^{\gamma}+M_{\beta \alpha}^{\gamma}\right)+u^{\prime \alpha} u^{\prime \beta} u^{\prime \delta}\left(M_{\alpha \beta}^{\prime}{ }_{\alpha \beta}-N_{\alpha \beta} d_{\delta}^{\prime \prime}\right)\right] \tag{2.10a}\\
& B=\left[v_{\alpha} u^{\prime \prime \alpha}+u^{\prime \prime \alpha} u^{\prime \prime \beta}\left(2 N_{\alpha \beta}+N_{\beta \alpha}\right)+u^{\prime \alpha} u^{\prime \beta} u^{\prime \delta}\left(d_{\gamma \delta} M_{\alpha \beta}^{\prime}+N_{\alpha \beta}, \delta\right)\right] . \tag{2.10~b}
\end{align*}
$$

and

$\lambda_{\text {R-CuRVES }}$

Definition 3.1. A curve C in an Euclidean space of three dimensions shall be called λ_{R}-curve, if the vector $\lambda^{\prime \prime \prime}$ lies in the rectifying plane at the point.

The differential equation of the rectifying plane to a curve C at a point P is [2]:

$$
\begin{equation*}
\left({ }^{\prime} x^{i}-x^{i}\right)\left(\rho^{\alpha} x^{i},{ }_{\alpha}+X^{i} k_{n}\right)=0 . \tag{3.1}
\end{equation*}
$$

For C to be a λ_{R}-curve ' $x^{i}=x^{i}+t \lambda^{\prime \prime \prime}$ must satisfy (2.1) for all t . Using this and (2.9) in (3.1), we get on simplification

$$
\begin{equation*}
A^{\alpha} \rho_{\alpha}+B k_{n}=0, \tag{3.2}
\end{equation*}
$$

as the differential equation of a $\lambda_{R^{-}}$-curve.
Remarks. In an earlier paper Rastogi and Bajpai [4], while studying the properties of the vector $\lambda^{\prime \prime \prime \prime}$, obtained equation (3.2) as the differential equation of a Super Darboux curve.

Alternatively, let us suppose that α^{i}, β^{i} and γ^{i} be respectively the direction cosines of unit tangent, principal normal and binormal to a $\lambda_{R^{\prime}}$-curve C, then we can express $\lambda^{\prime \prime \prime \prime}$ as follows:

$$
\begin{equation*}
\lambda^{\prime \prime \prime \prime}=a \alpha^{i}=b \gamma^{i}, \tag{3.3}
\end{equation*}
$$

where a and b are arbitrary constants to be determined.

Let ψ be the angle between the vectors α^{i} and $\lambda^{\prime \prime \prime}$, then for $D\left|\lambda^{\prime \prime \prime}\right|=1$, we can obtain

$$
\begin{equation*}
a=D^{-1} \cos \psi, b= \pm D^{-1} \sin \psi \tag{3.4}
\end{equation*}
$$

Substituting in equation (3.3), from equation (2.9) and (3.4), together with

$$
\begin{equation*}
\tau \gamma^{i}=-\left(d \beta^{i} / d s+k \alpha^{i}\right) \tag{3.5}
\end{equation*}
$$

we obtain on simplification

$$
\begin{align*}
x^{i},{ }_{\gamma} A^{\gamma}+B X^{i}= & D^{-1} x^{i}, \gamma\left[u^{\prime \gamma} \cos \psi \pm \tau^{-1} \sin \psi\left\{\rho^{\gamma} k^{\prime} k^{-2}-k u^{\prime \gamma}-k^{-1}\right.\right. \\
& \left.\left.\left(\rho^{\gamma},{ }_{\beta}-k_{n} d_{\beta}^{\gamma}\right) u^{\prime} \beta\right\}\right] \pm(D \tau k)^{-1}\left(k^{\prime} k^{-1} k_{n}-d_{\alpha \beta} \rho^{\alpha} u^{\prime \beta}-k_{n}{ }^{\prime}\right) X^{i} \sin \psi, \tag{3.6}
\end{align*}
$$

which easily leads to

$$
\begin{align*}
& \qquad \begin{aligned}
& \eta^{\gamma} \equiv A^{\gamma}-D^{-1}\left[u^{\prime \gamma} \cos \psi \pm \tau^{-1} \sin \psi\left\{\rho^{\gamma} k^{\prime} k^{-2}-k u^{\prime \gamma}\right.\right. \\
&\left.\left.-k^{-1}\left(\rho^{\gamma},{ }_{\beta}-k_{n} d_{\beta}^{\prime}\right) u^{\prime} \beta\right\}\right]=0 \\
& \text { And } \quad B= \pm(D \tau k)^{-1}\left(k^{\prime} k^{-1} k_{n}-d_{\alpha \beta} \rho^{\alpha} u^{\prime \beta}-k_{n}\right) \sin \psi,
\end{aligned}
\end{align*}
$$

where η^{γ} shall be called the λ_{R}-curvature vector of a curve C.
Equation (3.7a) represents analternative from of differential equation of λ_{R}-curves.
In case the vectors α^{i} and $\lambda^{\prime \prime \prime}$ are parallel, i.e., $\psi=0$, equations (3.7a) and (3.7b) respectively reduce to $\eta^{\gamma}=1 A^{\gamma}-D^{-1} u^{\prime \gamma}=0$ and $B=0$, i.e. equation (3.2) will imply $A^{\alpha} \rho_{\alpha}=0$. Also $B=0$, represents the differential equation of generalized Darboux curves [4]. Hence we have:

Theorem 3.1. In an Euclidean space of three dimensions, if the vector $\lambda^{\prime \prime \prime \prime}$ is parallel to α^{i}, λ_{R}-curve satisfies the differential equation $A^{\gamma}-D^{-1} u^{\prime \gamma}=0$ or $A^{\alpha} \rho_{\alpha}=0$ and it reduces to a generalized Darboux curve.

λ_{R}-CURVATURE

Let K_{R} represents the λ_{R}-curvature of a curve C, i.e., the magnitude of the vector with contravariant components η^{γ}, then we can obtain after some lengthy calculation

$$
\begin{align*}
K_{R}^{2}=A^{\gamma} A_{\gamma}-2 D^{-1} & {\left[A_{\gamma} u^{\prime \gamma}\left(\cos \psi \pm k \tau^{-1} \sin \psi\right) \pm(k \tau)^{-1}\left\{\operatorname { s i n } \psi \left(k^{-1} k^{\prime} A_{\gamma}\right.\right.\right.} \\
& \left.\left.\left.\rho^{\gamma}-A_{\gamma} \rho^{\prime \gamma}+k_{n} d_{\gamma \beta} A^{\gamma} u^{\prime \beta}\right)-(1 / 2) D^{-1} \sin 2 \psi\left(k_{g}^{2}+u^{\prime \gamma} \rho^{\prime}{ }_{\gamma}\right)\right\}\right]+D^{-2} \\
& {\left[\cos ^{2} \psi+\tau^{-2} \sin ^{2} \psi\left\{k^{\prime 2} k^{-4} k_{g}^{2}+k^{-2} \rho^{\prime \gamma} \rho^{\prime}{ }_{\gamma}-k^{2}-2 k_{n}^{2}+2 u^{\prime \gamma} \rho^{\prime}{ }_{\gamma}\right.\right.} \\
& \left.\left.-2 k^{-3} k^{\prime}\left(\rho^{\prime \gamma} \rho_{\gamma}^{\prime}-k_{n} d_{\gamma \beta} u^{\prime \gamma} \rho^{\beta}\right)+k^{-2} k_{n} d_{\gamma \beta} u^{\prime \beta}\left(d^{\gamma}{ }_{\theta} u^{\prime \theta}-2 \rho^{\prime \gamma}\right)\right\}\right], \ldots(4, \ldots \tag{4.1}
\end{align*}
$$

where $k_{g}{ }^{2}=k^{2}-k_{n}^{2}$. Thus we have
Theorem 4.1. In a three-dimensional Euclidean space λ_{R}-curvature K_{R} of a curve C is given by (4.1) and it vanishes identically for a λ_{R}-curve.

For $\psi=0$, equation (4.1) reduces to

$$
\begin{equation*}
K_{R}^{2}=A^{\gamma} A_{\gamma}-2 D^{-1} A_{\gamma} u^{\prime \gamma}+D^{-2} \tag{4.2}
\end{equation*}
$$

which implies.
Theorem 4.2. In a three-dimensional Euclidean space if the vector $\lambda^{\prime \prime \prime} i$ is parallel to $\alpha^{i}, \lambda_{R^{-}}$ curvature K_{R} of a curve C is given by (4.2).

Curvature of a λ_{R} Curve

Let α^{i}, β^{i} and γ^{i} be respectively the direction cosines of unit tangent, principal normal and binormal to a curve C, then for a λ_{R}-curve we can express γ^{i} in the following form:

$$
\begin{equation*}
\gamma^{i}=p \alpha^{i}+q \lambda^{\prime \prime \prime} \tag{5.1}
\end{equation*}
$$

where p and q are arbitrary constants to be determined.
Let ψ be the angle between the vectors α^{i} and $\lambda^{\prime \prime \prime} i$, then for $D\left|\lambda^{\prime \prime \prime}\right|=1$

$$
\begin{equation*}
p=-\cot \psi, q=D \operatorname{cosec} \psi \tag{5.2}
\end{equation*}
$$

From equations (5.1) and (5.2), we get

$$
\gamma^{i}=\operatorname{cosec} \psi\left(D \lambda^{\prime \prime \prime}-\alpha^{i} \cos \psi\right)
$$

Comparing equations (3.5) and (5.3), we get on simplification

$$
k^{2}=\rho_{\alpha, \beta} u^{\prime \alpha} u^{\beta}-k_{n}^{2} .
$$

Hence we have:
Theorem 5.1.- The curvature of a λ_{R}-curve C, in an Euclidean space of three dimensions is given by (5.4) and this curvature will vanish if and only if the curve satisfies

$$
\begin{equation*}
\left(\rho_{\alpha, \beta}-d_{\alpha \gamma} d_{\beta \delta} u^{\prime \delta}\right) u^{\prime \alpha}, u^{\prime \beta}=0 . \tag{5.5}
\end{equation*}
$$

From equation (1.3) we can easily obtain

$$
\begin{equation*}
k^{2}=\rho^{\alpha}, \rho_{\alpha}+k_{n}^{2} \tag{5.6}
\end{equation*}
$$

therefore, comparing equations (5.4) and (5.6) we get
and

$$
\begin{align*}
& k^{2}=(1 / 2)\left(\rho_{\alpha, \beta} u^{\prime \alpha} u^{\prime \beta}+\rho^{\alpha} \rho_{\alpha}\right) \tag{5.7}\\
& k_{n}^{2}=(1 / 2)\left(\rho_{\alpha, \beta} u^{\prime \alpha} u^{\prime \beta}-\rho^{\alpha} \rho_{\alpha}\right) \tag{5.8}
\end{align*}
$$

Hence we have :
Theorem 5.2. The curvature of a λ_{R}-curve C, in an Euclidean space of three dimensions satisfies equation (5.7) while the normal curvature of the surface is given by equation (5.8).

Substituting the values of α^{i}, β^{i} and γ^{i}, with the help of equations (5.3) and (5.4), we can obtain

$$
\begin{equation*}
\tau=-(B D)^{-1} \sin \psi\left\{\left(k_{n} / k\right)^{\prime}+k^{-1} d_{\alpha \beta} \rho^{\alpha} u^{\prime \beta}\right\} . \tag{5.9}
\end{equation*}
$$

If we assume that $d_{\alpha \beta} \rho^{\alpha} u^{\prime \beta}=0$, equation (5.9) gives $\tau=-(B D)^{-1} \sin \psi\left\{\left(k_{n} / k\right)^{\prime}\right.$ and conversely. Hence we have:

Theorem 5.3. The necessary and sufficient condition for λ_{R}-curves to be conjugate to their curvature vectors, is given by $\tau=-(B D)^{-1} \sin \psi\left(k_{n} / k\right)^{\prime}$.

If we assume $\tau=0, d_{\alpha \beta} \rho^{\alpha} u^{\prime \beta}=-k\left(k_{n} / k\right)^{\prime}$. Conversely, if $d_{\alpha \beta} \rho^{\alpha} u^{\prime \beta}=-k\left(k_{n} / k\right)^{\prime}$, we get $\tau=0$. Hence we have:

Theorem 5.4. The necessary and sufficient condition for a λ_{R}-curve to have vanishing torsion is given by $d_{\alpha \beta} \rho^{\alpha} u^{\prime \beta}=-k\left(k_{n} / k\right)^{\prime}$.

References

1. Bhattacharya, P.B., Curves on the surface of reference whose normal plane at any point contains the ray of the congruence through that point, Ganita, 11, 23-29 (1950).
2. Eisenhart, L.P., An introduction to differential geometry with use of tensor calculus, Princeton, (1947).
3. Mishra, R.S., Union curves and hyper-asymptotic curves on the surface of reference of a rectilinear congruence, Bull. Cal. Math. Soc., 42, 213-216 (1950).
4. Rastogi, S.C. and Bajpai, P., Generalized and Super Darboux curves in an Euclidean space of three dimensions, Journal of Science Technology \& Management, 81-90 (2007).
5. Bajpai, P. and Rastogi, S.C., A study of certain new curves in an Euclidean space of three dimensions-I (Under Publications).
6. Bajpai, P. and Rastogi, S.C., A study of certain new curves in an Euclidean space of three dimensions-II (Under Publications).
