A CLASS OF BE - ALGEBRAS

GAUTAM KUMAR PANDEY, MD. ILYAS
Department of Mathematics, Gaya College, Gaya
AND
R. L. PRASAD

Department of Mathematics, Magadh University, Bodh Gaya
RECEIVED : 29 May, 2017
In this paper we introduce a method to form a BE algebra of all fuzzy sets defined on an universe S . We prove here that this BE - algebra is commutative and transitive but it is not self distributive.

Introduction

The concept of a BE - algebra was introduced by H. S. Kim and Y. H. Kim in 2006. Since then several related concepts have been studied by different authors.

Definition (1.1) : A system $\left(X ;{ }^{*}, 1\right)$ of type $(2,0)$ consisting of a non-empty set X, a binary operation "*", and a fixed element 1 is called a BE-algebra if the following axioms are satisfied :

1. (BE 1) $x^{*} x=1$
2. (BE 2) $x * 1=1$
3. (BE 3) $1 * x=x$
4. (BE 4) $x *(y * z)=y *(x * z)$
for all $x, y, z \in X$.
Example (1.2) : A simplest example of a BE -algebra is as follows:-
Let $X=\{1,0\}$ and let a binary operation '*' be defined as

Table 1		
$*$	0	1
0	1	1
1	0	1

Then $\left(X ;{ }^{*}, 1\right)$ is a BE-algebra.
Proposition (1.3) : In a BE - $\operatorname{algebra}(X ; *, 1)$ the following hold:
(a) $x *(y * x)=1$,
(b) $x *((x * y) * y)=1$
for any $x, y \in X$.
Definition (1.4) : A BE-algebra $\left(X ;{ }^{*}, 1\right)$ is said to be
(a) Commutative, if

$$
(x * y) * y=(y * x) * x \quad \forall \quad x, y \in X
$$

(b) Self distributive, if for any $x, y, z \in X$

$$
x *(y * z)=(x * y) *(x * z)
$$

(c) transitive, if for any $x, y, z \in X$

$$
(y * z) *((x * y) *(x * z))=1
$$

Main results

Let S be a non-empty set and let X be set of all functions defined on S with values in $[0,1]$, i.e.; X is the set of all fuzzy sets on S.

Let 1^{*} and 0^{*} be the functions defined on S as

$$
\begin{equation*}
1^{*}(x)=1 \text { and } 0^{*}(x)=0 \text { for all } x \in S \tag{2.1}
\end{equation*}
$$

Also for $f, g \in X$, we define $f=g$ iff $f(x)=g(x)$ for all $x \in S$.
We prove the following results.
Lemma (2.1). For $f, g \in X$ we define

$$
\begin{align*}
(f \circ g)(x) & =\min \{f(x), g(x)\}+1-f(x) \tag{2.2}\\
& =(f \wedge g)(x)+1-f(x)
\end{align*}
$$

Then ' o ' is a binary operation in X.
Proof : For $x \in S$, let $\min \{f(x), g(x)\}=f(x)$. Then

$$
(f o g)(x)=f(x)+1-f(x)=1
$$

Again let $\min \{f(x), g(x)\}=g(x)=s$ and let $f(x)=t$. Then

$$
(f \circ g)(x)=s+1-\mathrm{t}=1-(t-s)<1
$$

So ' o ' defines a binary operation on S.
Lemma (2.2) (a) If $f(x)<g(x)$ on S then $f o g=1^{*}$.
(b) If $g(x)<f(x)$ on S then $(f \circ g)(x)=1+g(x)-f(x)$.

Proof : (a) For $x \in S, \min \{f(x), g(x)\}=f(x)$ and so

$$
\begin{aligned}
& (f o g)(x)=f(x)+1-f(x)=1=1^{*}(x) \\
\Rightarrow \quad & f \circ g=1^{*}
\end{aligned}
$$

(b) If $g(x)<f(x)$ then

$$
\begin{aligned}
(f o g)(x) & =g(x)+1-f(x) \\
& =1-(f(x)-g(x)) \\
& <1
\end{aligned}
$$

Theorem (2.3) : The system $\left(X ; o, 1^{*}\right)$ is a BE-algebra with zero element 0^{*} where binary operation ' $~ o$ '' is defined by (2.2).

Proof : For any $x \in S$ and $f \in X$ we have

$$
\begin{aligned}
& \text { (BE1) }(f \circ f)(x)=f(x)+1-f(x)=1=1^{*}(x) \\
& \Rightarrow \quad f o f=1^{*} \\
& (\mathrm{BE} 2)\left(f \circ 1^{*}\right)(x)=f(x)+1-f(x)=1=1^{*}(x)
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & f o 1^{*}=1^{*} \\
\text { (BE3) } & \left(1^{*} \text { of }(x)=f(x)+1-1=f(x) \Rightarrow 1^{*} \text { of }=f .\right.
\end{array}
$$

To prove (BE4), i.e., $f o(g \circ h)=g o(f o h)$ for $f, g, h \in X$,
we consider the following cases.
Case (a) : Let $f(x)<g(x)<h(x)$ on $A \subseteq S$.
Then by lemma (2.2) (a) we have $f o h=1^{*}$ and $g o h=1^{*}$
This gives $\mathrm{go}(\mathrm{f} \circ h)=1^{*}$ and $f o(g \circ h)=1^{*}$ by (BE2).
So $\quad f o(g o h)=g o(f \circ h)$ on A.
Case (b) : Let $g(x)<f(x)<h(x)$ on $B \subseteq S$.
Then $f o(g o h)=g o(f o h)$ on B as in case (a).
Case (c) : Let $f(x)<h(x)<g(x)$ on $C \subseteq S$.
Then f o $h=1^{*}$ by lemma (2.2) (a) and go ($f o h$) $=1^{*}$ on C by (BE2)
Also for $x \in C,(g \circ h)(x)=h(x)+1-g(x)$.
So $\quad \min \{f(x), h(x)+1-g(x)\}=f(x)$ on C.
Thus for $x \in C$, $(f \circ(g \circ h))(x)=f(x)+1-f(x)=1=1^{*}(x)$

$$
\Rightarrow \quad f o(g \circ h)=1^{*}
$$

This proves that $f o(g \circ h)=g o(f o h)$ on C.
Case (d) : Let $g(x)<h(x)<f(x)$ on $D \subseteq S$
Then $g o(f \circ h)=f o(g o h)$ on D follows from case (c).
Case (e): Let $h(x)<f(x)<g(x)$ on $E \subseteq S$
Then for $x \in E,(g \circ h)(x)=h(x)+1-g(x)$
and

$$
(f o h)(x)=h(x)+1-f(x) .
$$

Now either

$$
\begin{aligned}
& (\alpha) f(x)<h(x)+1-g(x) \Rightarrow g(x)<h(x)+1-f(x) \\
& \text { (阝) } h(x)+1-g(x)<f(x) \Rightarrow h(x)+1-f(x)<g(x) .
\end{aligned}
$$

or
In case (α), we have

$$
(f o(g \circ h))(x)=f(x)+1-f(x)=1
$$

and

$$
(g o(f o h))(x)=g(x)+1-g(x)=1
$$

In case (β), we have

$$
\begin{aligned}
(f \circ(g \circ h))(x) & =h(x)+1-g(x)+1-f(x) \\
= & 2+h(x)-g(x)-f(x)
\end{aligned}
$$

and

$$
(g o(f \circ h))(x)=2+h(x)-g(x)-f(x)
$$

So in both cases (α) and (β) we have

$$
f o(g o h)=g o(f o h) \text { on } E .
$$

Case (f) : Let $h(x)<g(x)<f(x)$ on $F \subset S$.
In this case also we have

$$
f o(g o h)=g o(f o h)
$$

Since S is disjoint union of A, B, C, D, E and F; we see that

$$
f o(g o h)=g o(f o h) \text { in all cases. }
$$

Hence $\left(X ; 0,{ }^{*}\right)$ is a BE-algebra.
Note (2.4): X also contains 0^{*} satisfying 0^{*} of $=1^{*}$ for all $f \in X$.
Definition (2.5): The complement of a function f, denoted as f^{c}, is defined as

$$
f^{c}(x)=\left(f o 0^{*}\right)(x)=0+1-f(x)=1-f(x) \text { for all } x \in S
$$

Lemma (2.6) : We have $\left(f^{c}\right)^{c}=f$.
Proof: Let $f^{c}=g$. Then

$$
g^{c}(x)=1-g(\mathrm{x})=1-(1-f(x)=f(x)
$$

for all $x \in S$. This proves that $g^{c}=f$, i.e., $\left(f^{c}\right)^{c}=f$.
$\operatorname{Lemma}(2.7): ~ f o g=g^{c} o f^{c}$
Proof : Let $f(x) \leq g(x)$ on S_{1} and $g(x)<f(x)$ on S_{2}.
For $x \in S_{1}$ we have, $(f \circ g)(x)=1, f^{c}(x)=1-f(x), g^{c}(x)=1-g(x)$
and $\left(g^{c} \circ f^{c}\right)(x)=1$, since $g^{c}(x) \leq f^{c}(x)$.
This gives $(f o g)(x)=\left(\begin{array}{lll}g^{c} & \text { o } f^{c}\end{array}\right)(x)$ for all $x \in S_{1}$.
Again for $x \in S_{2}$ we have

$$
\begin{align*}
(f o g)(x) & =g(x)+1-f(x) \tag{2.3}\\
f^{c}(x) & =1-f(x), g^{c}(x)=1-g(x)
\end{align*}
$$

Since $f^{c}(x)<g^{c}(x)$ we have

$$
\begin{aligned}
\left(g^{c} o f^{c}\right)(x) & =f^{c}(x)+1-g^{c}(x) \\
& =1-f(x)+1-1+g(x) \\
& =g(x)+1-f(x)
\end{aligned}
$$

From (2.3) and (2.4) we have

$$
(f \circ g)(x)=\left(\begin{array}{lll}
g^{c} & o f^{c}
\end{array}\right)(x) \text { on } S_{2}
$$

Since S is disjoint union of S_{1} and S_{2} we have the result.
Theorem (2.8) : A set X of function defined on S into [0,1] is a BE-algebra under a binary operation ' o ' defined by (2.2) with zero element 0^{*} iff it is closed with respect to complement and sum of functions $f(x)$ and $g(x)$ provided $f(x)+g(x) \leq 1$.

Proof : Suppose that X is a BE - algebra under binary operation ' o ' with zero element 0^{*}. Then X contains 1^{*}. Also $\left(0^{*}\right)^{c}=1^{*}$ and $\left(1^{*}\right)^{c}=0^{*}$. If $X=\left\{0^{*}, 1^{*}\right\}$ then it is closed w.r.t. complement and sum of functions.

We assume that $0^{*} \neq f \neq 1^{*}$ is an element of X. Then

$$
f o 0^{*}=f^{c} \in X \text {. But }
$$

$\left(f o 0^{*}\right)(x)=\min \{f(x), 0\}+1-f(x)$

$$
=0+1-f(x)=f^{c}(x) \text { implies that } f^{c} \in X \text {. So } X \text { is closed w.r.t. complement. }
$$

Let $f, g \in X$ and $f(x)+g(x) \leq 1$
Then $g(x) \leq 1-f(x)$ on X.
Now $f^{c} o g \in X \Rightarrow\left(f^{c} o g\right)(x)=\min \{1-f(x), g(x)\}+1-f^{c}(x)$.

$$
=g(x)+1-1+f(x)
$$

$$
=g(x)+f(x)=(g+f)(x)
$$

$$
\Rightarrow g+f \in X
$$

So X is closed w. r. t addition.
Conversely, suppose that X is closed w. r. t to complement and sum of functions f and g provided $f(x)+g(x) \leq 1$.

Let $f, g \in X$ and $f(x)+g(x) \leq 1$ for all $x \in S$.
Also $\quad(f \circ g)(x)=\min \{f(x), g(x)\}+1-f(x)$

$$
=1 \text { or } g(x)+1-f(x),
$$

according as $\quad f(x)<g(x)$ or $g(x) \leq f(x)$.
Since $g(x) \leq f(x) \Rightarrow g(x)+1-f(x) \leq 1$, according to given condition $(f o g) \in X$. Also other conditions of a BE - algebra can be proved as in theorem (2.3).

Hence the result.
Theorem (2.9) : The BE - algebra ($X ; 0,1^{*}$) is transitive .
Proof : To examine the equality

$$
(g \circ h) o((f \circ g) o(f \circ h))=1^{*} . f, g, h \in X .
$$

It is easy to see that whenever $f o h=1^{*}$
Then $\quad(g \circ h) o((f \circ g) o(f \circ h))=1^{*}$
We consider the cases discussed in the proof of theorem (2.3).
In cases (a), (b) and (c) $f(x)<h(x)$

$$
\Rightarrow \text { fo } h=1^{*} \quad[\operatorname{Lemma}(2.2(\mathrm{a}))]
$$

In case (d) we have $(f \circ h)(x)=h(x)+1-f(x)$
and

$$
(f o g)(x)=g(x)+1-f(x) .
$$

Now $\quad g(x)<h(x) \Rightarrow(f \circ g)(x)<(f \circ h)(x)$.
$\Rightarrow \quad((f \circ g) \circ(f \circ h))(x)=1 \quad$ i.e., $(f \circ g) \circ(f \circ h)=1^{*}$
So $\quad(g \circ h) o((f \circ g) o(f \circ h))=1^{*}$.
In case $(\mathrm{e}), \quad(f \circ h)(x)=h(x)+1-f(x)$
and

$$
(f \circ g) o(f \circ h)=(f \circ h), \text { since }(f \circ g)=1^{*} .
$$

Also $\quad(g \circ h)(x)=h(x)+1-g(x)$.

Since $f(x)<g(x)$, we see that $(g o h)(x)<(f \circ h)(x)$
So $\quad(g \circ h) o(f \circ h)=1^{*}$ on E.
This gives $(g \circ h) \circ((f \circ g) \circ(f \circ h))=(g \circ h) \circ(f \circ h)=1^{*}$ on E.
In case (f)

$$
(f \circ g)(x)=h(x)+1-f(x)
$$

and

$$
(f \circ h)(x)=h(x)+1-f(x)
$$

Since

$$
h(x)<g(x)
$$

$$
(f \circ h)(x)<(f \circ g)(x)
$$

So

$$
\begin{aligned}
{[(f \circ g) \circ(f \circ h)](x) } & =(f \circ h)(x)+1-(f \circ g)(x) \\
& =h(x)+1-f(x)+1-g(x)-1+f(x) \\
& =h(x)+1-g(x)
\end{aligned}
$$

Also

$$
(g \circ h)(x)=h(x)+1-g(x)
$$

So $\quad(g \circ h) o((f \circ g) o(f o h))=1^{*}$ on F
Thus we see that $(g \circ h) o((f \circ g) o(f o h))=1^{*}$ is true in all the cases.
Hence ($X ; o, 1^{*}$) is transitive.
Note (2.10): (a) $\left(X ; o 1^{*}\right)$ is not self distributive.
We consider the constant functions

$$
f(x)=0.3, g(x)=0.4 \text { and } h(x)=0.2
$$

for all $x \in X$.
Then

$$
\begin{aligned}
(g \circ h)(x) & =0.2+1-0.4 \\
& =0.8
\end{aligned}
$$

and so,

$$
(f o(g \circ h))(x)=0.3+1-0.3=1
$$

Again $\quad(f \circ g)(x)=1$
and

$$
(f o h)(x)=0.2+1-0.3=0.9
$$

This gives $((f \circ g) o(f \circ h))(x)=0.9+1-1=0.9$
Hence $\quad f o(g \circ h) \neq(f \circ g) o(f o h)$.
Theorem (2.11) : $\left(X ; 0,1^{*}\right)$ is commutative
Proof : Let $f, g \in X$. Let $f(x)<g(x)$ on $A, f(x)=g(x)$ on B.
and

$$
g(x)<f(x) \text { on } C .
$$

For $x \in A$, we have

$$
(f \circ g)=1^{*} \text { and so }(f \circ g) \circ g=g
$$

Again

$$
(g \circ f)(x)=f(x)+1-g(x)
$$

$$
>f(x)
$$

So

$$
((g \circ f) \circ f)(x)=f(x)+1-f(x)-1+g(x)=g(x)
$$

This gives

$$
(f \circ g) \circ g=(g \circ f) \text { of on } A
$$

Similarly we can prove that $(f \circ g) \circ g=(g \circ f)$ of on C

Also $\quad(f \circ g) \circ g=(g \circ f)$ of on B
Hence $\quad(f \circ g) \circ g=(g \circ f)$ of on X.
Hence $\left(X ; 0,1^{*}\right)$ is commutative.

References

1. Kim, H. S. and Kim, Y. H.,; On BE-algebras, Sci. Math. Japon, 66, No. 1, pp 113-116 (2007).
2. Kim, K. H., A Note on BE-algebras, Sci. Math. Japon, 72, No. 2, pp 127-132 (2010).
3. Pathak, K., Sabhapandit, P. and Chetia, B. C., Cartesian product of BE/CI - algebras with Essences and Atoms, Acta Ciencia Indica, Vol. XL M, No. 3, pp . 271-279 (2014).
4. Samaei, Z. M., Azadani, M.A.N. and Ranjbar, L. N., A class of BCK-Algebras, International Journal of Algebra, Vol. 5, No. 28, pp 1379-1385 (2011).
5. Walendziak, A., On commutative BE-algebra, Sci. Math. Japon, pp 585-588 (2008).
