A CLASS OF BE – ALGEBRAS

GAUTAM KUMAR PANDEY, MD. ILYAS

Department of Mathematics, Gaya College, Gaya

AND

R. L. PRASAD

Department of Mathematics, Magadh University, Bodh Gaya

RECEIVED : 29 May, 2017

In this paper we introduce a method to form a BE – algebra of all fuzzy sets defined on an universe S. We prove here that this BE - algebra is commutative and transitive but it is not self distributive.

INTRODUCTION

he concept of a BE – algebra was introduced by H. S. Kim and Y. H. Kim in 2006. Since then several related concepts have been studied by different authors.

Definition (1.1): A system (X; *, 1) of type (2, 0) consisting of a non-empty set X, a binary operation "*" and a fixed element 1 is called a BE-algebra if the following axioms are satisfied :

- 1. (BE 1) x * x = 1
- 2. (BE 2) x * 1 = 1
- 3. (BE 3) 1 * x = x

4. (BE 4)
$$x * (y * z) = y * (x * z)$$

for all $x, y, z \in X$.

Example (1.2): A simplest example of a BE-algebra is as follows:-

Let $X = \{1, 0\}$ and let a binary operation '*' be defined as

Table 1			
*	0	1	
0	1	1	
1	0	1	

Then (X; *, 1) is a BE-algebra.

Proposition (1.3): In a BE – algebra (X; *, 1) the following hold:

(a) x * (y * x) = 1,

(b)
$$x * ((x * y) * y) = 1$$

for any $x, y \in X$.

Definition (1.4) : A BE-algebra (X; *, 1) is said to be

(a) Commutative, if

$$(x * y) * y = (y * x) * x \forall x, y \in X;$$

207/M017

(b) Self distributive, if for any $x, y, z \in X$

$$x * (y * z) = (x * y) * (x * z);$$

(c) transitive, if for any $x, y, z \in X$

$$(y * z) * ((x * y) * (x * z)) = 1.$$

MAIN RESULTS

Let S be a non-empty set and let X be set of all functions defined on S with values in [0, 1], *i.e.*; X is the set of all fuzzy sets on S.

Let 1^* and 0^* be the functions defined on S as

$$1^*(x) = 1$$
 and $0^*(x) = 0$ for all $x \in S$ (2.1)

Also for $f, g \in X$, we define f = g iff f(x) = g(x) for all $x \in S$.

We prove the following results.

Lemma (2.1). For $f, g \in X$ we define

$$(fog) (x) = \min \{f(x), g(x)\} + 1 - f(x) \qquad \dots (2.2)$$
$$= (f \land g) (x) + 1 - f(x)$$

Then 'o' is a binary operation in X.

Proof : For $x \in S$, let min $\{f(x), g(x)\} = f(x)$. Then

$$(fog)(x) = f(x) + 1 - f(x) = 1$$

Again let min $\{f(x), g(x)\} = g(x) = s$ and let f(x) = t. Then

$$(fog)(x) = s + 1 - t = 1 - (t - s) < 1$$

So 'o' defines a binary operation on S.

Lemma (2.2) (a) If f(x) < g(x) on *S* then $fog = 1^*$.

(b) If g(x) < f(x) on S then (fog)(x) = 1 + g(x) - f(x).

Proof : (a) For $x \in S$, min $\{f(x), g(x)\} = f(x)$ and so

$$(fog)(x) = f(x) + 1 - f(x) = 1 = 1^{*}(x)$$

$$\Rightarrow$$
 fog = 1^{*}.

(b) If g(x) < f(x) then (fog)(x) = g(x) + 1 - f(x) = 1 - (f(x) - g(x))< 1.

Theorem (2.3) : The system
$$(X; o, 1^*)$$
 is a BE–algebra with zero element 0^* where binary operation " o " is defined by (2.2).

Proof: For any
$$x \in S$$
 and $f \in X$ we have
(BE1) $(f \circ f)(x) = f(x) + 1 - f(x) = 1 = 1^* (x)$
 $\Rightarrow \quad f \circ f = 1^*;$
(BE2) $(f \circ 1^*)(x) = f(x) + 1 - f(x) = 1 = 1^* (x)$

48

 $fo 1^* = 1^*$: \Rightarrow (BE3) $(1^* o f)(x) = f(x) + 1 - 1 = f(x) \Longrightarrow 1^* o f = f.$ To prove (BE4), *i.e.*, $f \circ (g \circ h) = g \circ (f \circ h)$ for $f, g, h \in X$, we consider the following cases. **Case (a)** : Let $f(x) \le g(x) \le h(x)$ on $A \subseteq S$. Then by lemma (2.2) (a) we have $f \circ h = 1^*$ and $g \circ h = 1^*$ This gives $g \circ (f \circ h) = 1^*$ and $f \circ (g \circ h) = 1^*$ by (BE2). So f o (g o h) = g o (f o h)on A. **Case (b)** : Let $g(x) \le f(x) \le h(x)$ on $B \subseteq S$. Then f o (g o h) = g o (f o h) on B as in case (a). **Case (c)** : Let $f(x) \le h(x) \le g(x)$ on $C \subseteq S$. Then $f \circ h = 1^*$ by lemma (2.2) (a) and go $(f \circ h) = 1^*$ on C by (BE2) Also for $x \in C$, $(g \circ h)(x) = h(x) + 1 - g(x)$. min $\{f(x), h(x) + 1 - g(x)\} = f(x)$ on C. So Thus for $x \in C$, $(f \circ (g \circ h))(x) = f(x) + 1 - f(x) = 1 = 1^*(x)$ \Rightarrow $f o (g o h) = 1^*$. This proves that $f \circ (g \circ h) = g \circ (f \circ h)$ on C. **Case (d) :** Let g(x) < h(x) < f(x) on $D \subseteq S$ Then $g \circ (f \circ h) = f \circ (g \circ h)$ on D follows from case (c). **Case (e) :** Let h(x) < f(x) < g(x) on $E \subseteq S$ Then for $x \in E$, $(g \circ h)(x) = h(x) + 1 - g(x)$ $(f \circ h)(x) = h(x) + 1 - f(x).$ and Now either (a) $f(x) < h(x) + 1 - g(x) \implies g(x) < h(x) + 1 - f(x)$ (β) $h(x) + 1 - g(x) < f(x) \implies h(x) + 1 - f(x) < g(x)$. or In case (α) , we have (f o (g o h))(x) = f(x) + 1 - f(x) = 1and $(g \circ (f \circ h))(x) = g(x) + 1 - g(x) = 1$ In case (β), we have (f o (g o h)) (x) = h (x) + 1 - g (x) + 1 - f(x)= 2 + h(x) - g(x) - f(x) $(g \circ (f \circ h))(x) = 2 + h(x) - g(x) - f(x)$ and So in both cases (α) and (β) we have f o (g o h) = g o (f o h)on E. **Case (f)**: Let h(x) < g(x) < f(x) on $F \subset S$. In this case also we have

$$f o (g o h) = g o (f o h)$$

Since S is disjoint union of A, B, C, D, E and F; we see that

f o (g o h) = g o (f o h) in all cases.

Hence (X; 0, *) is a BE–algebra.

Note (2.4): X also contains 0^* satisfying $0^* o f = 1^*$ for all $f \in X$.

Definition (2.5): The complement of a function f, denoted as f^c , is defined as

 $f^{c}(x) = (f \circ 0^{*})(x) = 0 + 1 - f(x) = 1 - f(x)$ for all $x \in S$.

Lemma (2.6) : We have $(f^c)^c = f$.

Proof: Let $f^c = g$. Then

$$g^{c}(x) = 1 - g(x) = 1 - (1 - f(x)) = f(x)$$

for all $x \in S$. This proves that $g^c = f$, *i.e.*, $(f^c)^c = f$.

Lemma (2.7): $f \circ g = g^{c} \circ f^{c}$

Proof: Let $f(x) \le g(x)$ on S_1 and g(x) < f(x) on S_2 .

For $x \in S_1$ we have, $(f \circ g)(x) = 1$, $f^c(x) = 1 - f(x)$, $g^c(x) = 1 - g(x)$

and $(g^c \circ f^c)(x) = 1$, since $g^c(x) \le f^c(x)$.

This gives $(f \circ g)(x) = (g^c \circ f^c)(x)$ for all $x \in S_1$.

Again for $x \in S_2$ we have

$$(f \circ g)(x) = g(x) + 1 - f(x), \qquad \dots (2.3)$$
$$f^{c}(x) = 1 - f(x), \quad g^{c}(x) = 1 - g(x).$$

Since $f^c(x) < g^c(x)$ we have

$$(g^{c} o f^{c})(x) = f^{c}(x) + 1 - g^{c}(x)$$
$$= 1 - f(x) + 1 - 1 + g(x)$$
$$= g(x) + 1 - f(x)$$

From (2.3) and (2.4) we have

$$(f \circ g)(x) = (g^c \circ f^c)(x) \circ nS_2$$

Since S is disjoint union of S_1 and S_2 we have the result.

Theorem (2.8) : A set X of function defined on S into [0, 1] is a BE-algebra under a binary operation 'o' defined by (2.2) with zero element 0^* iff it is closed with respect to complement and sum of functions f(x) and g(x) provided $f(x) + g(x) \le 1$.

Proof: Suppose that X is a BE – algebra under binary operation 'o' with zero element 0^* . Then X contains 1^* . Also $(0^*)^c = 1^*$ and $(1^*)^c = 0^*$. If $X = \{0^*, 1^*\}$ then it is closed w. r. t. complement and sum of functions.

We assume that $0^* \neq f \neq 1^*$ is an element of X. Then

 $f \circ 0^* = f^c \in X$. But

 $(f \circ 0^*)(x) = \min \{f(x), 0\} + 1 - f(x)$

$$f^{c} = 0 + 1 - f(x) = f^{c}(x)$$
 implies that $f^{c} \in X$. So X is closed w.r.t. complement

Let $f, g \in X$ and $f(x) + g(x) \le 1$

Then $g(x) \leq 1 - f(x)$ on X.

Now
$$f^c \circ g \in X \implies (f^c \circ g)(x) = \min \{1 - f(x), g(x)\} + 1 - f^c(x)$$
.

$$= g(x) + 1 - 1 + f(x)$$

= g(x) + f(x) = (g + f)(x)

 \Rightarrow $g + f \in X$.

So X is closed w. r. t addition.

Conversely, suppose that X is closed w.r.t to complement and sum of functions fand g provided $f(x) + g(x) \le 1$.

Let
$$f, g \in X$$
 and $f(x) + g(x) \le 1$ for all $x \in S$.
Also $(f \circ g)(x) = \min \{f(x), g(x)\} + 1 - f(x)$
 $= 1 \text{ or } g(x) + 1 - f(x),$

according as f(x) < g(x) or $g(x) \le f(x)$.

Since $g(x) \le f(x) \Rightarrow g(x) + 1 - f(x) \le 1$, according to given condition (f o g) $\in X$. Also other conditions of a BE – algebra can be proved as in theorem (2.3).

Hence the result.

Theorem (2.9): The BE – algebra $(X; 0, 1^*)$ is transitive.

Proof : To examine the equality

 $(g \circ h) \circ ((f \circ g) \circ (f \circ h)) = 1^* f, g, h \in X.$

It is easy to see that whenever $f \circ h = 1^*$

 $(g \circ h) \circ ((f \circ g) \circ (f \circ h)) = 1^*$ Then

We consider the cases discussed in the proof of theorem (2.3).

In cases (a), (b) and (c) f(x) < h(x)

$$\Rightarrow f \circ h = 1^* \qquad [\text{Lemma} (2.2(a))]$$

In case (d) we have $(f \circ h)(x) = h(x) + 1 - f(x)$

nd
$$(f \circ g)(x) = g(x) + 1 - f(x).$$

ar

 $g(x) \le h(x) \Longrightarrow (f \circ g)(x) \le (f \circ h)(x).$ Now $((f \circ g) \circ (f \circ h))(x) = 1$ i.e., $(f \circ g) \circ (f \circ h) = 1^*$ \Rightarrow So $(g \circ h) \circ ((f \circ g) \circ (f \circ h)) = 1^*$. In case (e), $(f \circ h)(x) = h(x) + 1 - f(x)$ $(f \circ g) \circ (f \circ h) = (f \circ h)$, since $(f \circ g) = 1^*$. and $(g \circ h)(x) = h(x) + 1 - g(x).$

Also

Since f(x) < g(x), we see that (go h)(x) < (fo h)(x) $(g \circ h) \circ (f \circ h) = 1^* \text{ on } E.$ So This gives $(g \circ h) \circ ((f \circ g) \circ (f \circ h)) = (g \circ h) \circ (f \circ h) = 1^*$ on E. In case (f) $(f \circ g)(x) = h(x) + 1 - f(x)$ and $(f \circ h)(x) = h(x) + 1 - f(x)$ Since h(x) < g(x) $(f \circ h)(x) < (f \circ g)(x)$ So $[(f \circ g) \circ (f \circ h)](x) = (f \circ h)(x) + 1 - (f \circ g)(x)$ = h(x) + 1 - f(x) + 1 - g(x) - 1 + f(x)= h(x) + 1 - g(x)Also $(g \circ h)(x) = h(x) + 1 - g(x)$ So $(g \circ h) \circ ((f \circ g) \circ (f \circ h)) = 1^* \text{ on } F$ Thus we see that $(g \circ h) \circ ((f \circ g) \circ (f \circ h)) = 1^*$ is true in all the cases. Hence $(X; o, 1^*)$ is transitive. Note (2. 10): (a) $(X; o 1^*)$ is not self distributive. We consider the constant functions f(x) = 0.3, g(x) = 0.4 and h(x) = 0.2for all $x \in X$. Then $(g \circ h)(x) = 0.2 + 1 - 0.4$ = 0.8and so, (f o (g o h)) (x) = 0.3 + 1 - 0.3 = 1 $(f \circ g)(x) = 1$ Again $(f \circ h)(x) = 0.2 + 1 - 0.3 = 0.9$ and This gives $((f \circ g) \circ (f \circ h))(x) = 0.9 + 1 - 1 = 0.9$ Hence $fo(goh) \neq (fog)o(foh).$ **Theorem (2.11) :** $(X; 0, 1^*)$ is commutative **Proof**: Let $f, g \in X$. Let f(x) < g(x) on A, f(x) = g(x) on B. and $g(x) \leq f(x)$ on C. For $x \in A$, we have $(f \circ g) = 1^*$ and so $(f \circ g) \circ g = g$. $(g \circ f)(x) = f(x) + 1 - g(x)$ Again > f(x)So $((g \circ f) \circ f)(x) = f(x) + 1 - f(x) - 1 + g(x) = g(x)$ This gives $(f \circ g) \circ g = (g \circ f) \text{ of on } A.$ Similarly we can prove that $(f \circ g) \circ g = (g \circ f)$ of on C

52

Acta Ciencia Indica, Vol. XLIII M, No. 1 (2017)

Also $(f \circ g) \circ g = (g \circ f) \text{ of on } B$

Hence $(f \circ g) \circ g = (g \circ f) \text{ of on } X.$

Hence $(X; 0, 1^*)$ is commutative.

References

- 1. Kim, H. S. and Kim, Y. H.,; On BE-algebras, Sci. Math. Japon, 66, No. 1, pp 113–116 (2007).
- 2. Kim, K. H., A Note on BE-algebras, Sci. Math. Japon, 72, No. 2, pp 127–132 (2010).
- 3. Pathak, K., Sabhapandit, P. and Chetia, B. C., Cartesian product of BE/CI algebras with Essences and Atoms, *Acta Ciencia Indica*, Vol. XL M, No. 3, pp . 271–279 (2014).
- 4. Samaei, Z. M., Azadani, M.A.N. and Ranjbar, L. N., A class of BCK-Algebras, *International Journal of Algebra*, Vol. 5, No. 28, pp 1379-1385 (2011).
- 5. Walendziak, A., On commutative BE-algebra, Sci. Math. Japon, pp 585-588 (2008).