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This paper deals with the theoretical investigation of 
convective instability of a electrically non-conducting, 
incompressible MHD micropolar fluid layer heated from 
below in the presence of  porous medium. A dispersion 
relation is obtained for a flat fluid layer, contained between 
two free boundaries using a linear stability analysis theory 
and normal mode analysis method. The influence of 
various parameters like medium permeability magnetic 
field, coupling parameter, micropolar heat conduction 
parameter and micropolar coefficient has been analyzed 
on the onset of stationary convection and results are 
depicted graphically. The principle of exchange (PES) is 
found valid. In this paper we obtained that the magnetic 
field produces the oscillatory modes and found that the 
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INTRODUCTION 

The onset of convection instability of a fluid layer heated from below has been studied 

by many researchers. Bénard [3] in 1900 did an experiment of a fluid layer heated from below 
and observed a thermal instability. The theoretical analysis of Bénard’s experiment has been 
given by Rayleigh [4] and this analysis has also received a considerable importance due to its 
relevance in various fields such as chemical and industrial engineering, soil mechanics, 
geophysics etc. The main objectives of the various studies related to the convective instability, 
in particular, is to determine the critical Rayleigh number at which the onset of instability sets 
in either as stationary convection or through oscillations. 

The Rayleigh-Bénard convection in micropolar fluids heated from below has been 
extensively studied by Ahmadi [2], Datta and Sastry [1], Bhattacharyya and Jena [9], L.E. 
Payne and B. Straughan [5]. The common results of all these studies are found that the 
stationary convection is the preferred mode of instability and the microrotation has a stability 
effect on the onset of Rayleigh-Bénard convection. An excellent review as well as large 
number of new developments are given by Chandrasekhar [8] in his celebrated book on 
hydrodynamic and hydromagnetic stability. In these methods of stability study a linear theory 
is usually employed i.e., the equations governing the disturbances are linearized and then the 
grow or decay of the disturbances is studied. The effect of a magnetic field on the onset of 
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convection in a horizontal micropolar fluid layer heated from below has also been investigated 
by several researchers. The extension of micropolar flows to include magneto-hydrodynamics 
effects is of interest in regard to various engineering applications such as in the design of the 
cooling systems for nuclear reactors, MHD electrical power generation, shock tubes, pump, 
flow meters etc. The effects of through flow and magnetic field on the onset of Bénard 
convection in a horizontal layer of micropolar fluid confined between two rigid, isothermal 
and microrotation free, boundaries have been studied by Narasimha Murty [10]. Z Alloui and 
P. Vasseur [11] studied onset of Rayleigh-Bénard MHD convection in a micropolar fluid. 

 Sharma and Kumar [6, 7] also studied the effect of magnetic field on the micropolar 
fluids heated from below in a non-porous and porous medium, they found that in the presence 
of various coupling parameters, the magnetic field has a stabilizing effect whereas the medium 
permeability has destabilizing effect on stationary convection. 

MATHEMATICAL FORMULATION 

Consider an infinite, horizontal, electrically non-conducting, incompressible micropolar 

fluid layer of thickness d. This layer is heated from below such that the lower boundary is held 

at constant temperature 0T T  and the upper boundary is held at fixed temperature 1T T  

therefore, a uniform temperature gradient 
dT

dz
   is maintained. The physical configuration 

is one of infinite extent in x and y directions bounded by the planes 0z   and .z d  The 

whole system is acted on by gravity force (0, 0, ).gg  

	

A uniform magnetic field 0( , 0, 0)HH


 is applied along x-direction. The magnetic 

Reynolds number is assumed to be small, so that the induced magnetic field can be neglected 
in comparison with the applied magnetic field. 

The governing equations, which describe the system behavior following Boussinesq 
approximation, are as follows 

The equation of continuity for an incompressible fluid is 

∇. �⃗ = 0																																																																																						 … (1) 

The equation of momentum, following Darcy law, is given by 
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The equation of internal momentum is given by 

���	 �	
����⃗

��
+

1

∈
(	�⃗. ∇	)���⃗ 	� = �	� + �� 	�∇�	∇. ���⃗ � + 	 �́	∇����⃗ + �	 �	

1

∈
	∇ × �⃗ − 2���⃗ 	�					… (3) 

The equation of energy is given by 

[	���� ∈ +����(1−∈)]
��

��
+ ����(�.���⃗ ∇)� = ��∇�� + ��∇ × ���⃗ �. ∇�									 … . (4) 

And the equation of state is 

� = ��[	1 − �(� − ��)]																																																												… (5) 

where , , , , , , , , , , , , , , , , , , , , ,o s e T o v sp j T t T C C              q N


 and ˆze  denote 

respectively fluid velocity, microrotation, pressure, fluid density, reference density, fluid 
viscosity, coupling viscosity coefficient, magnetic permeability, microinertia coefficient, 
micropolar viscosity coefficients, specific heat at constant volume, temperature, time, thermal 
conductivity, micropolar heat conduction coefficient, coefficient of thermal expansion, 
reference temperature and unit vector along z-direction. 

The Maxwell’s equations become 

∈
����⃗

��
= ∇ × ��⃗ × ���⃗ �+∈ ��∇����⃗ 																																																									… (6) 

∇. ���⃗ = 0																																																																																																		 … (7) 

where  ��	 is the magnetic viscosity. 

BASIC STATE OF THE PROBLEM 

The basic state of the problem is assumed to be 

�⃗ = ������⃗ = (0,0,0)	, ���⃗ = ��
����⃗ = (0,0,0), ���⃗ = ��

����⃗ = (	��, 0,0), � = ��(�), � = ��(�) 

Using above equations the equations (1)-(7) yield 

���

��
+ ��� = 0																																																																															 … (8) 

� = −�� + �� 																																																																… (9) 

� = ��(	1 + ���	)																																																					… (10) 

PERTURBATION EQUATIONS 

Let  �⃗́	, ����⃗ 	, �́	, �	, ℎ�⃗ 		be represent the perturbations in �⃗	, ���⃗ 	, �	, �	, ���⃗ 		then the new 

variables become 

�⃗ = ������⃗ + �⃗́	, ���⃗ = ��
����⃗ + ����⃗ 	, � = �� + �́	, � = �� + �	, ���⃗ = ��

����⃗ + ℎ�⃗  
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Using these new variables and using equations (8), (9), (10) the equations (1)-(7) become 

∇. �⃗́ = 0																																																																																	 … (11) 
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+

1

∈
��⃗́. ∇��⃗́� = −∇�́ + (� + �)∇��⃗́ −
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+
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4�
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+
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�q́�⃗ . ∇�N���⃗ 	� = �ά + β� �∇ �∇. N���⃗ � + γ́∇�N���⃗ + ζ �

1

∈
∇ × q́�⃗ − 2N���⃗ � … (13) 

																					[	���� ∈ +����(1−∈)]
��

��
+ ������⃗́. ∇�� + ������⃗́. ∇� �� 

= ��∇�� + � �∇ × ����⃗ � . ∇� + � �∇ × ����⃗ � . ∇�� 			… (14) 

�́ = −����																																																																					 … (15) 

∈
�ℎ�⃗

��
= ���

����⃗ . ∇��⃗́+∈ ��∇�ℎ�⃗ 																																													… (16) 

∇. ℎ�⃗ = 0																																																																															 … (17) 

Using the following non-dimensional variables 

� = �∗�	, � = �∗�	, � = �∗�	, �⃗́ =
��

�
�∗���⃗ 	, ����⃗ =

��

��
�∗�����⃗ 	, � =

����

�
�∗	, � = ���∗,	 

�́ =
���

��
�∗	, ℎ�⃗ = ��ℎ∗���⃗ 	, �� =

��

����

 

and dropping the stars , the equations (11)-(17) become 

∇. �⃗ = 0																																																																																												 … (18) 

1

∈

��⃗

��
= −∇� + ����� + (1 + �)∇��⃗ −

(1 + �)

��

�⃗ + �∇ × ���⃗ + �∇ × ℎ�⃗ � × ��� 			… (19) 

�̅
����⃗

��
= �� ∇�∇. ���⃗ � − �∇ × �∇ × ���⃗ � + � �

1

∈
∇ × �⃗ − 2���⃗ �																																								… (20) 

���

��

��
= ∇�� + � − �̅�																																																																	 … (21) 

∈ ��

�ℎ�⃗

��
=

��⃗

��
+

∈ ��

��

∇�ℎ�⃗ 																																																																		… (22) 

∇. ℎ�⃗ = 0																																																																																										 … (23) 

where 
4

0

T

g d
R

K

 



 is the thermal Rayleigh number, 

2 2
0

4
e

T

H d
QR

K





is the Chandrasekhar  

number,
2

, ,
k

K J
d


 


�� =
�́ + �� + �́

���
	, � =

�́

���
	, �� =

�

����

	is	the	Prandtl	number	 

�� =
�

����

		is	the	magnetic	Prandtl	number, �̅ =
�

������
	, � = �∇ × ���⃗ �

�
	,	 
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� = �⃗. ��� 	, � = �∈ +
����(1−∈)

����

� 

BOUNDARY CONDITIONS 

We consider that both the boundaries of the problem are free and perfectly heat 

conducting, thus 

� = 0 =
���

���
	, � = 0	, ���⃗ = 0	, � = 0	at	� = 0	and	� = 1																						 … (24) 

DISPERSION RELATIONS 

Using curl operator on equations (18) to (23) and applying normal mode given by 

[	�	, �	, �	, ℎ�	] = [	�(�), �(�), Θ(�), �(�)]�(����������) and eliminating Θ	, �	, �, we have 

�
�

∈
(� � − ��) − (1 + �)(� � − ��)� + �

1 + �

��

� (� � − ��)� [��̅ − �(� � − ��) + 2�] 
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+
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(� � − ��)� [���� − (� � − ��)]� 

			+�� �
�(� � − ��)[���� − (� � − ��)][��̅ − �(� � − ��) + 2�]� = 0 … (25) 

where 	� = � � �
� + � �

�	and	� =
�

��
 

Boundary conditions (24) become � = 0 = � ��	 at z = 0 and z = 1 therefore     
� �� 	� = 0	 at z = 0 and z = 1, where n is a positive integer. 

Thus, � = �� sin ��	, where ��	is a constant. 

Substituting for W in equation (25), we have  

�
��

∈
+ (1 + �)� � + �

1 + �

��

� � � [��̅ + �� + 2�][���� + � ] �∈ ��� +
∈ ���

��

� 

	−��� �∈ ��� +
∈ ���

��

� ���̅ + �� + 2� −
�̅��

∈
� −

��� �

∈
�∈ ��� +

∈ ���

��

� [���� + � ] 

+�� �
�� [���� + � ][��̅ + �� + 2�] = 0								 … (26) 

where � = �� + ��. 

 

STATIONARY CONVECTION 

For the stationary marginal state we set 0   in (26) and we obtain 
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� =
� � �� +

1
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� (1 + �)(�� + 2�) −
��� �

∈
+

�� �
����

∈ ��
(� + 2�)

�� ��� + 2� −
�̅��

∈
�

																… (27) 

In the non-porous medium and in the absence of magnetic field and coupling parameter 
equation (27) reduces to 

� =
� �

��
�
� (1 + �)� + 2� + ��

(�� + 2�)
� 

Which is the same as given by Goodarz Ahmadi [2]. 

In the absence of magnetic field and in non-porous medium equation (27) reduces to  

� =
� �

��
�
�(1 + �)� + 2� + � �

�� − �̅��� + 2�
� 

Which is the same as proposed by C.E. Payne and B. Straughan and Y. Qin and P.N. 
Kaloni. 

Equation (27) can also be written as  

� =

� �(1 + �) + � � �(1 + �) �2� +
1

��
� −

��
∈

� + � � �
2�
��

(1 + �) +
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���

∈ ��
� +

2�� � �
����

∈ ��

�� �2� + � �1 −
�̅�
∈
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      … (28) 

where 
K

A
C

 is the micropolar coefficient. 

In order to investigate the effect of medium permeability ��, coupling parameter K, 
micropolar coefficient A, heat conduction parameter �̅ and magnetic field Q, we examine the 

behaviour of 
1

, , ,
dR dR dR dA

dK dK dA d
 and .

dR

dQ
 

From equation (28), we have 

��

���

= −
� �(1 + �)(2� + � )

��
��� �2� + � �1 −

�̅�
∈

��

⟹
��

���

< 0			when 		�̅ <
∈

�
	 

Thus, R decreases as �� increases when �̅ <
A


   hence the medium permeability has 

destabilizing effect when �̅ <
A


. 

From equation (28), we have 

��
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=
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−

�
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∈
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Thus, R  increases as K  increases when �̅ <
A


  and �� <

A


. Hence the coupling 

parameter has stabilizing effect. 
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				and				� >
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�̅� �
���

 

Thus, R  increases as A increases when � <
1K


	 and � >

2

2

2 m

x m

AK P

k P




hence the 

micropolar coefficient A has stabilizing effect when � <
1K


	 and � >

2

2

2 m

x m

AK P

k P




. 

Again from equation (28), we have 
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=

��

∈

⎣
⎢
⎢
⎢
⎡� �(1 + �) + � � �(1 + �) �2� +

1
��

� −
��
∈

� + � � �
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⎦
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⟹ 										
��

��̅
> 0			when 		 ∈	>

1

2
	 

Thus, R  increases as �̅	 increases when ∈>
1

2
, hence the heat conduction parameter has 

stabilizing effect when ∈>
1

2
	. 

Again from equation (28), we have 

��

��
=

� � �
���(2� + � )

∈ ���� �2� + � �1 −
�̅�
∈

��

 

⟹ 				
��

��
> 0				when 					�̅ <

∈

�
 

Thus, R  increases as Q increases when �̅ <
A


, hence the magnetic field has stabilizing 

effect when �̅ <
A


. 

CASE OF OVERSTABILITY: 



24 Acta Ciencia Indica, Vol. XLIII M, No. 1 (2017) 

 

Equation (26) may be written as  
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−���� � � + 2� −
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∈
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∈
+

�� �
���� �(� + 2� )
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= 0				 … (29) 

where 		� =
�̅

�
	 , � =

�

�
 

Putting � = ��� in equation (29) and separating real and imaginary parts and then 
eliminating ���, we have 

					� �� � + � �� + � � = 0																																																																											 … (30) 

where ��
� = �  

As  � = ��
� which is always positive, therefore both the roots of equation (30) must be 

positive so that the sum of the roots will be positive. But from equation (30), the sum of the 

roots is 1

0

A

A

 
   

 thus, the sufficient conditions for non-existence of over-stability are given by 

� � < 0	and � � < 0 which give  

�̅ <
∈

�
, ∈>

1

2
, � >

1

2
,

���

2
< �� < ��� .		 ����,

1

2(1 + �)
� 

and																											��� . �
1

∈
, ���� < � < ��� . � ∈ ��,

��

��

,
2� ��

�� �
��  

Hence PES is valid. 

NATURE OF OSCILLATORY MODES 

Multiplying both sides of equation (25) by W* ( complex conjugate of W ) and integrate 

with respect to z from z = 0 to z = 1, we have  
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�
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�
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�� = � |Θ|���
�

�
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�

�
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�
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																					�� = � [|� ��|� + 2��|�� |� + ��|�|�]��
�

�

 

Putting � = �� + ��� and �∗ = �� − ��� in equation (31) and separating real and 
imaginary parts, we have  

The real part in the absence of micropolar heat conduction parameter is given by 

��� =
�� �

��

∈
−∈ ��̅� +

�����

∈
� + (1 + �) �

��

��
+ ��� − 2� ∈ ��+∈ ��� +

�����

∈ ��

������� + ��

			… (32) 

The imaginary part in the absence of micropolar heat conduction parameter is given by 

�� �
��

∈
+ ��������+∈ ��̅� −

�����

∈
� = 0																																						 … (33) 

In the absence of magnetic field equation (33) reduces to  

�� �
��

∈
+ ��������+∈ ��̅�� = 0																																							 … (34) 

Since ��, ��, ��	 are all positive, then �� = 0. Hence in the absence of magnetic field and 
heat conduction parameter oscillatory modes do not exist and PES is valid. Hence magnetic 
field produces oscillatory modes. 

For oscillatory modes equation (33) reduces to 

��� =

�����

∈
−

��

∈
−∈ ��̅�

�����

																																																							… (35) 

Eliminating ��� between equations (32) and (35), we have 

�� = −
∈

2�������

�
(1 + �)�������

��

+� ������� + ������(�� − 2 ∈ ��) 

+∈ �������� + ����
������

∈ ��

+
��

∈
(�� − �����)+∈ ��̅���� 

⟹ �� < 0			when 		 ∈<
��

2��

		and		� <
��

����
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Hence oscillatory modes if exist will be stable  when 2

52

I

I
  and 1

7r

I
Q

P I
 .   

CONCLUSION 

1. The medium permeability has destabilizing effect when 
A


   . 

2. The coupling parameter has stabilizing effect when �̅ <
A


  and �� <

A


. 

3. The micropolar coefficient has stabilizing effect when � <
1K


	and � >

2

2

2 m

x m

AK P

k p




. 

4. The heat conduction parameter has stabilizing effect when ∈>
1

2
. 

5. The magnetic field has stabilizing effect when �̅ <
A


 . 

6. The  oscillatory modes if exist will be stable  when ∈< 2

52

I

I
  and  � < 1

7r

I

P I
.   
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