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INTRODUCTION 

Many different forms of continuous functions have been introduced over the years. 

Some of them are pre continuity [1, 4], semi continuity [3], α̂g continuity [12] and slightly  
continuity [2, 6]. Various interesting problems arise when one considers continuity. Its 
importance is significant in various areas of mathematics and related sciences. In this paper, 
slightly α ̂g continuity is introduced and studied. 

Throughout the present paper, X and Y are always topological spaces. Let A be a subset of 
X. We denote interior and closure of A by int (A) and cl (A) respectively. 

PRELIMINARIES 

Definition 2.1: A  subset A  of a topological space X is said to be 

(1) pre open [4] if A  int (cl (A)) 

(2) semi open [3] if A   cl (int (A)) 

(3) α  open [5] if A  int (cl (int (A))) 

A subset A of a topological space X is said to be α̂ generalized closed (α̂g closed) [12] if 
int (cl (int (A))) ⊂ U whenever A ⊂ U and U is open in X. 

The complement of pre open (semi open, α open) set is pre closed (semi closed, α closed). 
The complement of α ̂g closed set is α ̂g open. 

The family of all open(respy α ̂g open, clopen, α̂g clopen) sets of X is denoted by O (X) 
(α̂gO (X), CO (X), α̂gCO (X)). 

Definition 2.2: A function f : X → Y  is α̂g continuous [12]  if f –1 (V) is α̂g open in X for 
each open set  V of Y. 
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Definition 2.3:   A function f : X → Y  is slightly continuous [2]  if f –1 (V) is open in X for 
each clopen set V of Y. 

SLIGHTLY α ̂g CONTINUOUS FUNCTIONS 

In this section the idea of slightly α ̂g continuous function is introduced and 

characterizations and relationships of α ̂g continuous function and basic properties of slightly 
α ̂g continuous functions are studied. 

Definition 3.1 : A function  f : X → Y  is called slightly  α ̂g continuous  if f  –1 (V) is α ̂g 
open in X for each clopen set  V of Y. 

Theorem 3.2 : The following statements are equivalent for a  function  f : X → Y : 

(1) f is slightly α ̂g continuous 

(2) for every clopen set V of Y,  f –1 (V) is α̂g closed in X 

(3) for every clopen set V of Y,  f –1 (V) is α̂g clopen in X 

Proof : Straight forward. 

Theorem 3.3 : Let  f : X → Y  be a function and g : X → Y  be the graph of the function f, 
defined by g (x) = (x, f (x)), for every x in X. If g is slightly α ̂g continuous, then f is slightly α ̂g 
continuous. 

Proof : Let V ϵ CO (Y). Then X × V ϵ CO (X × Y). As g is slightly α ̂g continuous, f –1 (V)= 
g–1 (X × V) ϵ α̂g O (X). Then f is slightly α ̂g continuous. 

Definition 3.4 : A function  f : X → Y  is called: 

(1) α ̂g irresolute [12] if f –1 (V) α̂g open for  every α ̂g open set V of Y. 

(2) α ̂g open [12] if f (A) is α̂g open in Y for every α ̂g open set A of X. 

Theorem 3.5 : Let  f : X → Y and g : Y → Z  be functions. Then the following are true: 

(1) if f is α ̂g irresolute and g is slightly α ̂g continuous, then gof : X → Z is slightly α ̂g 
continuous 

(2) if f is α ̂g irresolute and g is α ̂g continuous,  then gof : X → Z is slightly α ̂g 
continuous 

(3) if f is α ̂g irresolute and g is slightly continuous, then gof : X → Z is slightly α ̂g 
continuous 

Proof : (1) Let V be clopen in Z. As g is slightly α ̂g continuous, g–1 (V) is α̂g open. Hence 
(gof)–1 (V) = f –1 (g–1 (V)) is α̂g open, since f is α ̂g irresolute. So gof is slightly α ̂g continuous. 

(2) and (3) can be got similarly. 

Theorem 3.6 : Let  f : X → Y and g : Y → Z  be functions. If f is α ̂g open and surjective  
and gof : X → Z is slightly α ̂g continuous then g is slightly α ̂g continuous. 

Proof : Let V ϵ CO (Z). As gof is slightly α ̂g continuous, (gof)–1 (V) = f –1 (g–1 (V)) is α̂g 
open in X. Since f is α ̂g open and surjective, f (f –1 (g–1 (V))) = g–1 (V) is α̂g open in Y. Hence g 
is slightly α ̂g continuous. 

Combining the previous two theorems, we have the following result. 

Theorem 3.7 : Let f : X → Y be surjective, α ̂g irresolute and α ̂g open and g : Y → Z be a 
function. Then gof : X → Z is slightly α ̂g continuous if and only if g is α ̂g slightly continuous.  
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Definition 3.8:  

(i) A filter base  Λ is said to be α̂g convergent to a point x ϵ X if for any U ϵ α ̂g O (X) 
containing x, there exists B ϵ Λ such that B ⊂ U. 

(ii) A filter base Λ is said to be coconvergent to a point x ϵ X if for any U ϵ CO (X) 
containing x, there exists B ϵ Λ  such that B ⊂ U. 

Theorem 3.9 : If a function f : X → Y is slightly α ̂g continuous, then for each x ϵ X and 
each filter base  Λ in X α ̂g converging to x, the filter base f (Λ) is coconvergent to f (x). 

Proof : Let x ϵ X and  Λ be any filter base in X, α ̂g converging to x. Since f is slightly α ̂g 
continuous, then for any V ϵ CO (Y) containing f (x), f –1 (V) is α̂g open containing x. As Λ is 
converging to x, there exists B ϵ Λ  such that B ⊂ f –1 (V). Hence f (B) ⊂ V. So the filter base     
f (Λ) is  is coconvergent to f (x). 

Definition 3.10:  A space X is α ̂g connected [12] if X is not the union of two disjoint 
nonempty α ̂g open sets. 

Theorem 3.11: Let f : X→ Y be slightly α ̂g continuous surjective function and X be α ̂g 
connected. Then Y is a connected space. 

Proof :  Let Y be not connected. Then there exists two disjoint nonempty open sets U and 
V  such that  Y = U ∪ V. So, U and V are clopen sets in Y. Hence f –1 (U) and f –1 (V) are α̂g open 
in X. As f is surjective  and U and V are disjoint, f –1 (U) and f –1 (V) are disjoint nonempty α̂g 
open sets whose union is X, which is a contradiction. Hence Y is connected. 

Definition 3.12 : A  topological space X is called hyperconnected [11] if every nonempty 
open subset of X is dense in X.  It is well known that every hyperconnected space is connected 
but not conversely.   

The following example shows that slightly α ̂g continuous surjection does not necessarily 
preserve hyper connectedness. 

Example 3.13: Let  X = {a, b, c}, τ = {φ,{a}, X} and σ = {φ,{b}, {c}, {b, c}, φ}.  Then 
the identity function f : (X, τ) → (X, σ) is slightly α ̂g continuous and surjective. (X, τ) is 
hyperconnected but (X, σ) is not hyperconnected. 

COVERING PROPERTIES 

In this section, the relation between slightly α ̂g continuous function and compactness are 

studied. 

Definition  4.1 :  A space X is said to be mildly compact [7] (respy. α ̂g compact [12]) if 
every clopen cover (respy. α ̂g open cover) of X has a finite sub cover. 

A subset A of a space X is said to be mildly compact (respy. α̂g compact)  relative to X if 
every cover of A by clopen (respy. α ̂g open) sets of X has a finite sub cover. 

A subset A  of a space X is said to be mildly compact (respy. α ̂g compact) if the subspace 
A is mildly compact (respy. α ̂g compact) 

Theorem 4.2 :  If a function f : X → Y is slightly α ̂g continuous and K is α ̂g compact 
relative to X, then f (K) is mildly compact in Y. 

Proof:  Let {Hα : α ϵ I} be any  cover of f (K) by clopen sets of the subspace f (K). For 
each  α ϵ I, there exists a clopen set Kα of Y such that Hα = Kα ⋂ f (K). For every x ϵ K, there 
exists αx ϵ I such that f (x) ϵ Kαx  and  f–1 (Kαx) ϵ α ̂g O (X) . Since the family {f –1 (Kαx) : x ϵ K}  
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is a cover of K by α ̂g open sets of X, there exits a finite subset K0  of K  such that                     
K ⊂ ∪ {f–1 (Kαx) : x ϵ K0}. Hence we have f (K) ⊂ ∪ {Kαx : x ϵ K0}. Thus f (K) = ∪ {Hαx : x ϵ 
K0} and hence f (K) is  mildly compact. 

Corollary 4.3 :  If f : X → Y is slightly α ̂g continuous, surjective and X is α̂g compact, 
then Y is mildly compact. 

Definition 4.4 :  A space X is said to be: 

(1) mildly countably compact [7] if every clopen countable cover of X has a countable 
sub cover 

(2) mildly Lindelof [7] if every clopen cover of X has a countable sub cover 

(3) countably α ̂g compact if every countable α ̂g open cover of X has a finite sub cover 

(4) α ̂g Lindelof if every α ̂g open cover of X has a countable sub cover 

(5) α ̂g closed compact if every α ̂g closed cover of X has a finite sub cover 

(6) countably α ̂g closed compact if every countable α ̂g closed cover of X has a finite 
sub cover 

(7) α ̂g closed Lindelof if every α ̂g closed cover of X has a countable sub cover. 

Theorem 4.5:  Let f : X → Y be a slightly α ̂g continuous surjection. Then the following 
statements hold: 

(1) if X is α ̂g Lindelof, then Y is mildy Lindelof  

(2) if X is countably  α ̂g compact, then Y is mildly countably compact. 

Proof : (1) Let {Vα : α ϵ I} be any clopen cover of Y. As f is slightly α ̂g continuous,         
{f –1 (Vα) : α ϵ I} is a α ̂g open cover of X. Since X is α ̂g Lindelof, there exists a countable subset 
I0 of I  such that X = ∪{f –1 (Vα) : α ϵ I0}. Hence Y = ∪ {Vα : α ϵ I0}. So Y is mildly Lindelof. 

The proof of (2) is similar. 

Theorem  4.6 :    Let f : X → Y be a slightly α ̂g continuous surjection. Then the following 
statements hold: 

(1) if X is α ̂g closed compact, then Y is mildly compact 

(2) if X is α ̂g closed Lindelof, then  Y is mildly compact 

(3) if  X is countably α ̂g closed compact, then Y is mildly countably compact. 

Proof :  Similar to the proof of the above theorem. 

SEPARATION AXIOMS 

In this section, the relation between slightly α ̂g continuous function and separation 

axioms are investigated. 

Definition 5.1 :  A space X is said to be : 

(i) α̂g T1 [12] if for each pair of distinct points x and y of X, there exist α ̂g open sets U and 
V containing x and y respectively such that y ∉ U and x ∉ V. 

(ii) α ̂g T2 (α̂g Hausdorff) [12] if for each pair of distinct points x and y of X, there exist 
disjoint α ̂g open sets U and V in X containing x and y respectively. 
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(iii) clopen T1 [7], if  for each pair of distinct points x and y of X, there exist clopen sets 
U and V containing x and y respectively such that  y ∉ U and x ∉ V. 

(iv) clopen T2 (clopen Hausdorff or ultra Hausdorff) [7] if for each pair of distinct 
points x and y of X, there exist disjoint clopen sets containing x and y respectively. 

Remark  5.2 : The following implications hold for a topological space X : 

(1) clopen T1 implies T1  

(2) T1  implies α ̂g T1 

None of these  implications is reversible. 

Example 5.3 : Let R be the real numbers with the finite complement topology τ. Then   
(R, τ) is T1 but not clopen T1. 

Example 5.4 : Let X = {a, b, c}, τ = {φ, {a, b}, X}.  (X, τ) is α ̂g T1 but not T1.. 

Theorem 5.5 : If  f : X → Y be a slightly α ̂g continuous injection and Y is clopen T1, then 
X is α ̂g T1. 

Proof :  Let Y be f clopen T1. Let x and y be distinct points of X. There exist  V,               
W ϵ CO (Y) such that f (x) ϵ V, f (y) ∉ V  and f (y) ϵ W, f (x) W. Since f is slightly α ̂g continuous 
f –1 (V), f –1 (W) ϵ α̂g O (X) such that x ϵ f –1 (V), y ∉ f –1 (V) and y ϵ f –1 (W), x ∉ f –1 (W). Hence X 
is α ̂g T1. 

Theorem 5.6 :  If f : X → Y be a slightly α ̂g continuous injection and Y is clopen T2, then 
X is α ̂g T2. 

Proof : Let Y be clopen  T2. Let x and y be distinct points of X. There exist disjoint clopen 
sets U and V containing f (x) and f (y) respectively. Since f is slightly α ̂g continuous  f –1 (U),    
f –1 (V) ϵ α ̂g O (X). f –1 (U), f –1 (V) are disjoint α ̂g open sets containing x and y respectively. 
Hence X is α ̂g T2. 

Definition  5.7 : A space is called clopen regular (respy. α ̂g regular) if for each clopen 
(respy. α ̂g closed) set F and each point x ∉ F, there exist disjoint open sets U and V such that  
F ⊂ U and x ϵ V. 

Definition  5.8 : A space is called clopen normal (respy. α ̂g normal) if for every pair of 
clopen (respy. α ̂g closed) sets F1 and F2, there exist disjoint open sets U and V such that        
F1 ⊂ U and F2 ⊂ V. 

Theorem  5.9 :   If  f is slightly α ̂g continuous injective  open function from a α ̂g regular 
space X  onto a space Y, then Y is clopen regular. 

Proof :  Let F be clopen in Y and y ϵ Y be such that y ∉ F. Let y = f (x). As f is slightly α ̂g 
continuous, f –1 (F) is α ̂g closed in X. Take G =  f –1 (F). We have x ∉ G. Since X is α ̂g regular, 
there exist disjoint open sets U and V such that G ⊂ U and x ϵ V. We have F = f (G) ⊂ f (U) 
and y = f (x) ϵ f (V) such that f (U) and f (V) are disjoint open sets. So Y is clopen regular. 

Theorem 5.10 :  If  f is slightly α ̂g continuous injective  open function from a α ̂g normal 
space X onto a space Y, then Y is clopen normal. 

Proof :  Let F1 and F2 be disjoint clopen subsets of Y. Since f is slightly α ̂g continuous      
f –1 (F1) and f –1 (F2) are α̂g closed sets.  Take U = f –1 (F1) and V = f –1(F2). We have U ⋂ V = φ. 
Since X is α ̂g normal, there exist disjoint open sets A and B such that U ⊂ A and V ⊂ B.  We 
obtain  that F1 = f (U) ⊂ f (A) and F2 = f (V) ⊂ f (B) such that f (A) and f (B) are disjoint open 
sets.  Thus Y is clopen normal.  For a function  f : X → Y the subset G (f) = {(x, f (x)) : x ϵ X} 
⊂ X × Y is called the graph of f. 
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Definition  5.11: A graph  G (f) of a function f : X → Y is said to be strongly α ̂g co-closed 
if for each (x, y) ϵ (X × Y) – G (f), there exists U ϵ α ̂g CO (X) containing x and V ϵ CO (Y) 
containing y such that (U × V) ⋂ G (f) = φ. 

Lemma  5.12 : [12] A graph G (f) of a function f : X → Y is strongly α ̂g co-closed in        
X × Y if and only if  for each (x, y) ϵ (X × Y) – G (f), there exists U ϵ α ̂g CO (X) containing      
x and V ϵ CO (Y) containing y such that f (U) ⋂ Y = φ. 

Theorem  5.13 :  If  f : X → Y  is slightly α ̂g continuous and Y is clopen T1, then G (f) is 
strongly α ̂g co-closed  X × Y. 

Proof : Let (x, y) ϵ (X × Y) – G (f). Then  f (x) ≠ y and there exists clopen set V of Y such 
that f (x) ϵ V and y ∉ V. Since f is slightly α ̂g continuous, then f –1 (V) ϵ α ̂g CO (X) containing x. 
Take U = f –1 (V). We have  f (U) ⊂ V. Hence f (U) ⋂ (Y – V) = φ and  Y – V ϵ CO (Y) 
containing y. This shows that G (f) is strongly α ̂g co-closed in X × Y. 

Corollary  5.14 :   If f : X → Y is slightly α ̂g continuous and Y is clopen Hausdorff, then 
G (f) is strongly α ̂g co-closed in X × Y. 

Theorem  5.15 :  Let f : X → Y has a strongly α ̂g co-closed graph G (f). If f is injective, 
then X is α ̂g T1. 

Proof : Let x and y be distinct points of X. Then (x, f (y)) ϵ (X × Y) – G (f). By Lemma 
5.12, there exists α ̂g clopen set U of X and V ϵ CO (Y) such that (x, f (y)) ϵ U × V and                
f (U) ⋂ V = φ. Hence U ⋂ f –1 (V) = φ and y ∉ U. This  implies that X is α ̂g T1. 

Theorem  5.16 :  Let f : X → Y has a strongly α ̂g co-closed graph G (f). If f is surjective 
α ̂g open function, then Y is α ̂g T2. 

Proof:  Let y1  and y2 be distinct points of Y. Since f is surjective f (x) = y1 for some x ϵ X 
and (x, y2) ϵ (X × Y) – G (f). By  definition,  there exists α ̂g clopen set U of X and V ϵ CO (Y) 
such that (x, y2) ϵ U × V and (U × V) ⋂ G (f) = φ. Then we have f (U) ⋂ V = φ. Since f is α ̂g 
open, f (U) is α̂g open  such that f (x) = y1 ϵ f (U). This implies Y is α ̂g T2. 

RELATIONSHIPS 

Definition  6.1 :  A function f : X → Y is said to be: 

(1) semi continuous [3] if f –1 (V) is semi open for each open set V of Y. 

(2) pre continuous [1, 4] if f –1 (V) is pre open for each open set V of Y. 

(3) strongly α ̂g irresolute  if f –1 (V) is  open for each α ̂g open set V of Y. 

The following diagram holds. 

(i) Pre continuous → α ̂g continuous → slightly α ̂g continuous 

(ii) Slightly continuous → slightly α ̂g continuous. 

(iii) Strongly α ̂g irresolute → α̂g irresolute → α ̂g continuous. 

(iv) Semi continuity → α ̂g continiuity. 

Example 6.2 : Let  X = {a, b, c}, τ = σ = {φ, {a}, {b}, {a, b}, X} 

Define  f : (X, τ) → (X, σ) to be the identity function. f is α ̂g irresolute but not strongly α ̂g 
irresolute, as {a, c} is α ̂g open, f –1 ({a, c}) = {a, c} is not open. 

Example 6.3 : Let X = {a, b, c}  τ = σ = {φ, {a}, {a, b}, X} 
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Define f : (X, τ) → (X, σ) by f (a) = a, f (b) = b, f (c) = b. f is α ̂g continuous but not α ̂g 
irresolute, as {b} is α ̂g open f –1 ({b}) = {b, c} is not α̂g open. 

Example 6.4 : Let X = {a, b, c},  τ = σ = {φ, {a}, X} 

Define f : (X, τ) → (X, σ) by f (a) = b, f (b) = a, f (c) = c. f is α̂g continuous but not pre 
continuous, as {a} is open  f –1 ({a}) = {b} is not pre open. 

Example 6.5 :  Take X, τ, σ, f as in the above example. 

f is  α ̂g continuous but not semi continuous, as  {a} is open f –1 ({a}) = {b} is not semi 
open. 

Example 6.6 :  Let X = {a, b, c}  τ = σ = {φ, {a}, {a, b}, X} 

Define f : (X, τ) → (X, σ)  by  f (a) = b, f (b) = a, f (c) = a.  f is slightly α ̂g continuous but 
not α ̂g continuous, as {a} is open, f –1 ({a}) = {b, c} is not α ̂g open. 

Example 6.7 : Let X = {a, b, c} τ = {φ, {a}, {a, b}, X}, σ = {φ, {a},{b},{a, b}, {a, c}, X} 

Define f : (X, τ) → (X, σ)  by  f (a) = a, f (b) = b, f (c) = c.  f is slightly α ̂g continuous but 
not slightly continuous, as {b} is clopen, f –1 ({b}) = {b} is not open. 
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