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Analogous to a curve, called 0-curve, which is such that is 
osculating plane contains the vector d

3


i
/ds

3
 Rastogi [5], in 

this paper, we have defined a new curve called N-curve. 
This is such that its normal plane contains the vector 
d

3


i
/ds

3
, where 

i
 are the contra-variant components of a 

unit vector in the direction of the line 1 of the congruence 
passing through a point P. In this paper we have studied 
some of its curvature properties in an Euclidean space of 
three dimensions via-a-vis other well known curves. 

 

PRELIMINARIES 

Let S: xi = xi (u), (i = 1, 2, 3 and  = 1, 2), be the surface of reference of rectilinear 

congruence, a line 1 of which is given by the direction cosines 

     i = i   (u),  i . i =1   … (1.1) 

We assume that xi and i  are continuous along with their partial derivatives up to the 
required order. At any point P (xi) of S, i is expressible as [3] 

     i = p xi,  + q Xi,   … (1.2) 

where p are the contra-variant components of a vector in S at P and q is a scalar function, Xi 
are the direction cosines of the normal to S at P and xi,  denotes the covariant derivative of xi 
with respect to u based on the fundamental tensor of S, g = xi,  . x

i, . 

 The Gauss and Weingarten equations in Eisenhart [2] are given by xi,   = d   Xi,                        
Xi,  = - d 

 xi, , where d  is the second fundamental tensor of the surface S. 

Let us consider a curve C : xi = xi (s) on S, then the intrinsic derivative of xi, d xi/d s and          
d² xi/d s² is expressed as  

  xi = d xi/ds = xi, u
, xi = d²xi/ds² =  xi,  + Xi kn, … (1.3) 

and  xi = d3 xi/ds3 = (,  – kn  d  g
 ) xi,  u’ + (kn,  +  d ) X

i u , … (1.4) 

where, primes indicate the differentiation with respect to are-length s, p are the components 
of the geodesic curvature vector of the curve C and kn is the normal curvature of the surface in 
the direction of the curve C [2]. 

Similar to above equations we can also obtain for a vector i in the direction of the curves 
of the congruence-, following intrinsic derivatives Rastogi and Bajpai [4]. 

    = d i/ds = i,  u’  = ( x
i,  + v X

i) u , … (1.5) 

where    = p,  – q d   g
, v = q,  + p  d . … (1.6) 
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For a normal congruence  = – d and v = 0, while for a congruence formed by 
tangents to a one parameter family of curves  =  p,  and  =  p d. We known that           
i. i  = 1, therefore we can obtain i. i

,  = 0, which gives p 

 + q v = 0. 

Differentiating  i,   covariantly with respect to u, we get 

   i,  = M    x
i,  + N X

i, … (1.7) 

where  M 
  =  ,  –  d   g

 , N  = ,   +  d.  … (1.8) 

The intrinsic derivative of di/ds, represented by i along C can be obtained as follows: 

   i =  (M    
 u +   u

) xi,  + (N u
 u +  u

) Xi, … (1.9) 

such that  p M
 + q N +  


 +   = 0. 

From equation (1.7) we can get 

   i,    = (M 
 ,  – N d  g

 ) xi, + X i (M  d + N, ) … (1.10) 

such that  q {M
  (q d +  – p,) + M

  – M, 

) 

                     –  

 d p – N (


 p + q p d + q q,) = 0. … (1.11) 

 The intrinsic derivative of d²i/ds² along C which is represented by i can be obtained 
in the following form 

     i = (xi, A
 + BXi), … (1.12) 

where 

  A = [ u
 + u   u (2M    + M 

 )+ u u u (M 
 ,  – N  d )] … (1.13) a 

and 

  B = [ u
 + u + u u (2N  + N) + u u u (d M

  
  + N, )]. … (1.13) b 

N – CURVES 

Definition 2.1 – A curve C on the surface of reference S shall be called N –curve in an 

Euclidean space of three dimensions if the normal plane at any point P of C contains the 
vector i. 

Education of a normal plane to curve C at a point P is given by Eisenhart [2] as  

     (xi – xi) xi = 0 … (2.1) 

For C to be a N-curve, xi = xi + t i, must satisfy equation (2.1). Hence in view of 
(1.12) and (2.1), we obtain A u

’  = 0 or alternatively 

 [  u
 + u u (2M  + M ) + u u u (M ,  – N  d )] u

  = 0, … (2.2) 

as the differential equation of a N–curve. 

Thus we have 

Theorem 2.1 – In an Euclidean space of three dimensions, the differential equations of a 
N-curve is given by either A u

 = 0 or equation (2.2). 

For a normal congruence equation (2.2) reduces to  

   u {d  u
 + u u  (2d ,  + d , ) + u u u d , } 

      – Kn d  d ) u
 u = 0,        … (2.3) 
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While for a congruence formed by tangents to a one parameter family of curves, equation 
(2.2) reduces to 

 u {p,  u
 + u u (2p,   – 2p,   – p d d)] 

  + [(p,,, – p d  d,,) u
 u – kn (3p,  d  + 2p d , )] u

 u = 0. … (2.4) 

ALTERNATIVE EQUATION OF N-CURVES 

Let i, i and i  be respectively the direction cosines of unit tangent, principal normal 

and bi-normal to a curve C, then for a N-curve, i can be expressed as follows: 

     i  = a i + b i,   … (3.1) 

where a and b are arbitrary constants to be determined. 

 Let  be the angle between the vectors i and i, then for D |i | = 1, 

     a = D–1 cos ,   b = ± D–1 sin . … (3.2) 

Substituting in equation (3.1) from (1.3), (1.12) and using 

     i = –  –1 (k i + d i/ds), … (3.3) 

We obtain on simplification 

      = A + D–1 [–1 sin  u {k   + k–1 (ρ,  – kn d

)} 

      – k–1 ρ (cos  + k–1 –1 k sin )] = 0       … (3.4) 

And      = sin  (d ρ
 u – kn k k

–1 + kn) (kn cos  – B k D)–1 … (3.5) 

Equation (3.4) represented the differential equation of a N-curve and the vector  is 
called N-curvature vector of a curve C and  vanishes for a N-curve. 

 The differential equation of a Darboux curve Semin [6] is expressed as dρ
u + kn     

= 0, therefore from equation (3.5), for a Darboux curve we can obtain 

      = – sin  (kn k k
–1) (kn cos  – B k D)–1, … (3.6) 

which implies. 

Theorem 3.1. In an Euclidean space of three dimensions the torsion of a N-curve, which 
is also a Darboux curve is given by (3.6) 

 Now we shall discuss some special cases. 

Case I. If the vector i is parallel to vector i, with the help of equation (3.2), (3.4) and 
(3.5) we get  = 0 and 

      = A – D–1 k–1 ρ. … (3.7) 

Hence we have: 

Theorem 3.2. In an Euclidean space of three dimensions, if the vector i  is parallel to 
the vector i, the vector A is parallel to the vector ρ and the N-curvature vector  satisfies             
 u 

 = 0 such that the torsion of the curve C vanishes identically. 

Case II. If the vector i  is perpendicular to vector i, with the help of equation (3.2), 
(3.4) and (3.5) we get 

   A = D–1 k–1 –1 [k–1 k  + kn d

 u' – k² u' – ,  u'] … (3.8) 
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and      = (B k D)–1 (kn k' k–1 – kn' – d 
 u') … (3.9) 

From equation (3.8), by virtue of  u' = 0, ,  u' u' = 0 and k² = kn
2 + kg², we get on 

simplification 

     D–1 k–1 –1 kg
² = 0, … (3.10) 

which leads to kg = 0 or kn = k, provided D, k and  do not vanish. 

Hence we have: 

Theorem 3.3. In an Euclidean space of three dimensions, if the vector i is 
perpendicular to the vector i such that D, k and  do not vanish then the first curvature of the 
N-curve is equal to the normal curvature. 

From equation (3.9), for a Darboux curve, we can obtain  = (B k D)–1 kn k k
–1, which 

leads to 

Theorem 3.4. In an Euclidean space of three dimensions, if the vector i  is 
perpendicular to the vector i and the given curve C is both a N-curve and a Darboux curve, 
then its torsion is given by  = (B k D)–1 kn k k

–1. 

N-CURVATURE.  

Analogous to the well known definition of union curvature, let KN be the N-curvature of 

a curve C, i.e., the magnitude of the vector , then we can obtain after some calculation 

K²N = A A + 2D–1 [–1 sin {((k – kn) d + k–1 , ) A
 u – k–2 k  A} 

   – k–1  A cos ] + D–2 [–2 sin²  {k² – 2kn
2 + k–4 k2 kg

2 

   + (k–2 ,  
,   2k–2 kn ρ

,  d + k² kn
2 d  d


 + 2, ) u

 u} 

   + 2k–2 –1 sin  {cos  (k–1 k kg
2 – ,  u

 + kn 
 d u

) 

   – k–1 –1 k  u sin  (p,  – kn d

)} + k–2 kg

2 cos² ]. … (4.1) 

From equation (4.1) we obtain 

Theorem 4.1. In a three- dimensional Euclidean space N- curvature KN, of a curve C is 
given by equation (4.1) and it vanishes for a N-curve. 

CURVATURE OF A N-CURVE,  

Let us assume that 

     i = c i + d i … (5.1) 

 If  is the angle between i and i, we can easily obtain 

     c = – cot ,   d = D cosec . … (5.2) 

Substituting the values of c and d in (5.1) together with the value of i, i and i, we get 
on simplification 

     A = (D k cosec )–1 {ρ  –1 cos  (k u + k–1 ,  u
)  

      – d u
 – k–2 k )} … (5.3) 

and                  kn = B k D cosec  + k–1 –1 cos  (kn + d 
 u  k–1 kn k). … (5.4) 
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Multiplying equation (5.3) by u and using u ρ = 0, ,  u
 u = 0, A u

 = 0, we get 

on simplification k = kn or kg = 0. Substituting k = kn in (5.4), we get 

     k² = ( DB)–1 cos  d   u
 (sin  – DB)–1

. … (5.5) 

If the given curve is a line of curvature Eisenhart [2], i.e., d  
 u = 0, equation (5.5) 

gives k = 0. Hence we have: 

Theorem 5.1. In an Euclidean space of three dimensions, if N-curve is also lines of 

curvature its curvature k vanishes. 

SOME PROPERTIES OF OTHER CURVES 

Case I. If we are given a curve which satisfies the differential equation i xi = 0 or 

alternatively p u
 = 0, i.e., if it is a CB-cure Bhattacharya [1], we can obtain on differentiating 

this equation  i xi + i xi = 0 or alternatively 

       u
 u + (p 

 + q kn) = 0. … (6.1) 

If we assume that the given curve is also a hyper-asymptotic curve [3], i.e., p
 + qkn        

= 0, by virtue of equation (6.1) we get   u
 u = 0, which shows that the given curve is an 

N*-curve Trivedi [6]. Hence we have: 

Theorem 6.1. In a three dimensional Euclidean space the necessary and sufficient 
condition for the CB-curves to be a hyper-asymptotic curve is that it be an N*- curve.  

Case II. If we assume that i Xi = 0, i.e., N  u
 u = 0, we can obtain  

     i Xi – i  d 


 u xi,  = 0, … (6.2) 

which can be expressed as B = M d

 u

. Hence we have: 

Theorem 6.2.– In a three- dimensional Euclidean space, a curve C, satisfying N  u
 u 

= 0, also satisfies B = M d

 u

.  

Case III. If for a curve C in an Euclidean space of three dimensions i xi = 0, we get on 
differentiation i  xi  + i  xi =0, which leads to 

     A u
 + M 

 + N kn = 0. … (6.3) 

If A u
 = 0, the given curve is a N-curve, while if M 

 + N kn= 0, the given curve is a 
generalized asymptotic curve [4]. Hence we have:  

Theorem 6.3. In a three-dimensional Euclidean space a curve C satisfying i xi = 0 or 
alternatively M u

  = 0, is a generalized asymptotic curve if and only if it is a N-curve. 
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