A STUDY OF CERTAIN NEW CURVES IN AN EUCLIDEAN SPACE OF THREE DIMENSIONS-II

PRADEEP BAJPAI, S.C. RASTOGI

Department of Mathematics, Bhabha Institute of Technology, Kanpur (D) U.P. (India)
RECEIVED : 24 September, 2015
Analogous to a curve, called λ_{0}-curve, which is such that is osculating plane contains the vector $d^{3} \lambda^{i} / d s^{3}$ Rastogi [5], in this paper, we have defined a new curve called λ_{N}-curve. This is such that its normal plane contains the vector $d^{3} \lambda^{i} / d s^{3}$, where λ^{i} are the contra-variant components of a unit vector in the direction of the line 1 of the congruence passing through a point P. In this paper we have studied some of its curvature properties in an Euclidean space of three dimensions via-a-vis other well known curves.

Preliminaries

L congruence, a line 1 of which is given by the direction cosines

$$
\begin{equation*}
\lambda^{i}=\lambda^{i}\left(u^{\alpha}\right), \lambda^{i} \cdot \lambda^{i}=1 \tag{1.1}
\end{equation*}
$$

We assume that x^{i} and λ^{i} are continuous along with their partial derivatives up to the required order. At any point $P\left(x^{i}\right)$ of S, λ^{i} is expressible as [3]

$$
\begin{equation*}
\lambda^{i}=p^{\alpha} x^{i},{ }_{\alpha}+q X^{i}, \tag{1.2}
\end{equation*}
$$

where p^{α} are the contra-variant components of a vector in S at P and q is a scalar function, X^{i} are the direction cosines of the normal to S at P and $x^{i},{ }_{\alpha}$ denotes the covariant derivative of x^{i} with respect to u^{α} based on the fundamental tensor of $S, g_{\alpha \beta}=x^{i},{ }_{\alpha} \cdot x^{i},{ }_{\beta}$.

The Gauss and Weingarten equations in Eisenhart [2] are given by $x^{i},{ }_{\alpha \beta}=d_{\alpha \beta} X^{i}$, $\mathrm{X}^{\mathrm{i}},{ }_{\alpha}=-\mathrm{d}_{\alpha}{ }^{\delta} \mathrm{x}^{\mathrm{i}},{ }_{\delta}$, where $\mathrm{d}_{\alpha \beta}$ is the second fundamental tensor of the surface S .

Let us consider a curve $C: x^{i}=x^{i}(s)$ on S, then the intrinsic derivative of $x^{i}, d x^{i} / d s$ and $d^{2} x^{i} / d s^{2}$ is expressed as

$$
\begin{equation*}
x^{\prime i}=d x^{i} / d s=x^{i},{ }_{\alpha} u^{\prime \alpha}, x^{\prime \prime \prime}=d^{2} x^{i} / d s^{2}=\rho^{\alpha} x^{i},{ }_{\alpha}+X^{i} k_{n}, \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime \prime \prime \prime}=d^{3} x^{i} / d s^{3}=\left(\rho^{\alpha},{ }_{\beta}-k_{n} d_{\beta \theta} g^{\theta \alpha}\right) x^{i},{ }_{\alpha} u^{, \beta}+\left(k_{n, \beta}+\rho^{\alpha} d_{\alpha \beta}\right) X^{i} u^{\prime}{ }^{\beta}, \tag{1.4}
\end{equation*}
$$

where, primes indicate the differentiation with respect to are-length s, p^{α} are the components of the geodesic curvature vector of the curve C and k_{n} is the normal curvature of the surface in the direction of the curve C [2].

Similar to above equations we can also obtain for a vector λ^{i} in the direction of the curves of the congruence- λ, following intrinsic derivatives Rastogi and Bajpai [4].

$$
\begin{equation*}
\lambda^{\prime}=d \lambda^{i} / d s=\lambda^{i}, \alpha u^{\prime} \alpha=\left(\mu_{\alpha}^{\gamma} x^{i}, \gamma_{\gamma}+v_{\alpha} X^{i}\right) u^{\prime \alpha}, \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{\alpha}^{\gamma}=p^{\gamma},{ }_{\alpha}-q d_{\alpha \beta} g^{\beta \gamma}, v_{\alpha}=q,{ }_{\alpha}+p^{\beta} d_{\alpha \beta} . \tag{1.6}
\end{equation*}
$$

For a normal congruence $\mu^{\gamma}{ }_{\alpha}=-d^{\gamma}{ }_{\alpha}$ and $\nu_{\alpha}=0$, while for a congruence formed by tangents to a one parameter family of curves $\mu_{\alpha}^{\gamma}=p^{\gamma},{ }_{\alpha}$ and $\nu_{\alpha}=p^{\beta} d_{\alpha \beta}$. We known that $\lambda^{i} . \lambda^{i}=1$, therefore we can obtain $\lambda^{i} . \lambda_{, \alpha}^{i}=0$, which gives $p_{\gamma} \mu_{\alpha}^{\gamma}+q v_{\alpha}=0$.

Differentiating $\lambda^{i},{ }_{\alpha}$ covariantly with respect to $u^{\prime \beta}$, we get

$$
\begin{array}{ll}
& \lambda^{i},{ }_{\alpha \beta}=M^{\gamma}{ }_{\alpha \beta} x^{i}, \gamma+N_{\alpha \beta} X^{i}, \\
\text { where } \quad & M^{\gamma}{ }_{\alpha \beta}=\mu_{\alpha, \beta}^{\gamma}-v_{\alpha} d_{\beta \theta} g^{\theta \gamma}, N_{\alpha \beta}=v_{\alpha, \beta}+\mu_{\alpha}^{\gamma} d_{\gamma \beta} .
\end{array}
$$

The intrinsic derivative of $d \lambda^{i} / d s$, represented by $\lambda^{\prime \prime \prime}$ along C can be obtained as follows:

$$
\begin{equation*}
\lambda^{\prime \prime i}=\left(M_{\alpha \beta}^{\gamma} \mu^{\prime \alpha} u^{\prime \beta}+\mu_{\alpha}^{\gamma} u^{\prime \prime \alpha}\right) x^{i},{ }_{\gamma}+\left(N_{\alpha \beta} u^{\prime \alpha} u^{\prime \beta}+v_{\alpha} u^{\prime \prime \alpha}\right) X^{i}, \tag{1.9}
\end{equation*}
$$

such that $p^{\gamma} M^{\gamma}{ }_{\alpha \beta}+q N_{\alpha \beta}+\mu_{\alpha \delta} \mu^{\delta}{ }_{\beta}+v_{\alpha} \nu_{\beta}=0$.
From equation (1.7) we can get

$$
\begin{align*}
& \lambda^{i}{ }_{\alpha \beta \gamma \gamma}=\left(M_{\alpha \beta}^{\theta}{ }_{\gamma}-N_{\alpha \beta} d_{\gamma \delta} g^{\delta \theta}\right) x^{i}{ }_{, \theta}+X^{i}\left(M_{\alpha \beta}^{\theta} d_{\theta \gamma}+N_{\alpha \beta, \gamma}\right) \tag{1.10}\\
& q\left\{M_{\alpha \beta}^{\theta}\left(q d_{\theta \gamma}+\mu_{\theta \gamma}-p_{\theta, \gamma}\right)+M_{\beta \gamma}^{\theta} \mu_{\theta \alpha}^{\theta}-M_{\beta \theta, \gamma} \mu_{\alpha}^{\theta}\right) \\
& \quad-\mu_{\alpha}^{\theta} \mu_{\beta}^{\varphi} d_{\theta \gamma} p_{\varphi}-N_{\alpha \beta}\left(\mu_{\gamma}^{\theta} p_{\theta}+q p^{\theta} d_{\theta \gamma}+q q, \gamma\right)=0 . \tag{1.11}
\end{align*}
$$

such that

The intrinsic derivative of $d^{2} \lambda^{i} / d s^{2}$ along C which is represented by $\lambda^{\prime \prime \prime}$ can be obtained in the following form

$$
\begin{equation*}
\lambda^{\prime \prime \prime i}=\left(x^{i}, \gamma^{i} A^{\gamma}+B X^{i}\right) \tag{1.12}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{\gamma}=\left[\mu_{\alpha}^{\gamma} \mathrm{u}^{\prime \prime \prime \alpha}+u^{\prime \prime \alpha} \mathrm{u}^{\prime \beta}\left(2 M_{\alpha \beta}^{\gamma}+M_{\beta \alpha}^{\gamma}\right)+u^{\prime \alpha} \mathrm{u}^{\prime \beta} \mathrm{u}^{\prime \delta}\left(M_{\alpha \beta}^{\gamma}{ }_{\delta}{ }_{\delta}-N_{\alpha \beta} d_{\delta}^{\gamma}\right)\right] \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\left[v_{\alpha} u^{\prime \prime \prime \alpha}+u^{\prime \prime \alpha}+u^{\prime \prime \alpha} u^{\prime \beta}\left(2 N_{\alpha \beta}+N_{\beta \alpha}\right)+u^{\prime \alpha} u^{\prime \beta} u^{\prime \delta}\left(d_{\gamma \delta} M_{\alpha \beta}^{\gamma}+N_{\alpha \beta}, \delta\right)\right] . \tag{1.13}
\end{equation*}
$$

λ_{N} - curves

Definition 2.1 - A curve C on the surface of reference S shall be called λ_{N}-curve in an Euclidean space of three dimensions if the normal plane at any point P of C contains the vector $\lambda^{\prime \prime \prime \prime}$.

Education of a normal plane to curve C at a point P is given by Eisenhart [2] as

$$
\begin{equation*}
\left(x^{i}-x^{i}\right) x^{\prime i}=0 \tag{2.1}
\end{equation*}
$$

For C to be a λ_{N}-curve, ${ }^{\prime} x^{i}=x^{i}+t \lambda^{\prime \prime \prime \prime}$, must satisfy equation (2.1). Hence in view of (1.12) and (2.1), we obtain $A_{\lambda} u^{\gamma}=0$ or alternatively

$$
\begin{equation*}
\left[\mu_{\gamma \alpha} u^{\prime \prime \prime \alpha}+u^{\prime \prime \alpha} u^{\prime \beta}\left(2 M_{\gamma \alpha \beta}+M_{\gamma \beta \alpha}\right)+u^{\prime \alpha}{u^{\beta}}^{\prime \prime} u^{\prime \delta}\left(M_{\gamma \alpha \beta}, \delta-N_{\alpha \beta} d_{\gamma \delta}\right)\right] u^{\prime \gamma}=0 \tag{2.2}
\end{equation*}
$$

as the differential equation of a λ_{N}-curve.
Thus we have
Theorem 2.1 - In an Euclidean space of three dimensions, the differential equations of a λ_{N}-curve is given by either $\mathrm{A}_{\gamma} \mathrm{u}^{\prime \gamma}=0$ or equation (2.2).

For a normal congruence equation (2.2) reduces to

$$
\begin{align*}
u^{\prime \gamma}\left\{d_{\gamma \alpha} u^{\prime \prime \prime \alpha}+u^{\prime \prime \alpha} u^{\prime \beta}\left(2 d_{\gamma \alpha, \beta}+d_{\gamma \beta, \alpha}\right)+\right. & \left.u^{\prime \alpha} u^{\prime \beta} u^{\prime \delta} d_{\gamma \alpha \beta, \delta}\right\} \\
& \left.-K_{n} d_{\alpha}^{\gamma} d_{\gamma \beta}\right) u^{\prime \alpha} u^{\prime \beta}=0, \tag{2.3}
\end{align*}
$$

While for a congruence formed by tangents to a one parameter family of curves, equation (2.2) reduces to

$$
\begin{align*}
& u^{\prime \alpha}\left\{p_{\alpha, \beta} u^{\prime \prime \prime \beta}+u^{\prime \prime \gamma} u^{\prime \beta}\left(2 p_{\alpha}, \gamma \beta-2 p_{\alpha, \beta \gamma}-p^{\varphi} d_{\gamma \varphi} d_{\alpha \beta}\right)\right] \\
& \quad+\left[\left(p_{\alpha, \theta, \beta, \delta}-p^{\varphi} d_{\theta \varphi} d_{\alpha, \beta, \delta}\right) u^{\prime \alpha} u^{\prime \beta}-k_{n}\left(3 p^{\varphi}, \delta_{\delta \varphi}+2 p^{\varphi} d_{\theta \varphi}, \delta\right)\right] u^{\prime \delta} u^{\theta}=0 \tag{2.4}
\end{align*}
$$

Alternative equation of λ_{N}-Curves

Let α^{i}, β^{i} and γ^{i} be respectively the direction cosines of unit tangent, principal normal and bi-normal to a curve C, then for a λ_{N}-curve, $\lambda^{\prime \prime \prime \prime}$ can be expressed as follows:

$$
\begin{equation*}
\lambda^{\prime \prime \prime i}=a \beta^{i}+b \gamma^{i}, \tag{3.1}
\end{equation*}
$$

where a and b are arbitrary constants to be determined.
Let ψ be the angle between the vectors β^{i} and $\lambda^{\prime \prime \prime}$, then for $D\left|\lambda^{\prime \prime \prime}{ }^{i}\right|=1$,

$$
\begin{equation*}
a=D^{-1} \cos \psi, \quad b= \pm D^{-1} \sin \psi \tag{3.2}
\end{equation*}
$$

Substituting in equation (3.1) from (1.3), (1.12) and using

$$
\begin{equation*}
\gamma^{i}=-\tau^{-1}\left(k \alpha^{i}+d \beta^{i} / d s\right), \tag{3.3}
\end{equation*}
$$

We obtain on simplification

$$
\begin{align*}
& \qquad \begin{array}{r}
\eta^{\alpha}=A^{\alpha}+D^{-1}\left[\tau^{-1} \sin \psi u^{\prime \beta}\left\{k \delta_{\beta}^{\alpha}+k^{-1}\left(\rho^{\alpha},{ }_{\beta}-k_{n} d^{\alpha}{ }_{\beta}\right)\right\}\right. \\
\left.-k^{-1} \rho^{\alpha}\left(\cos \psi+k^{-1} \tau^{-1} k^{\prime} \sin \psi\right)\right]=0
\end{array} \\
& \text { And } \tau=\sin \psi\left(d_{\alpha \beta} \rho^{\alpha} u^{\prime \beta}-k_{n} k^{\prime} k^{-1}+k_{n}{ }^{\prime}\right)\left(k_{n} \cos \psi-B k D\right)^{-1} \tag{3.4}
\end{align*}
$$

Equation (3.4) represented the differential equation of a λ_{N}-curve and the vector η^{α} is called λ_{N}-curvature vector of a curve C and η^{α} vanishes for a λ_{N}-curve.

The differential equation of a Darboux curve Semin [6] is expressed as $d_{\alpha \beta} \rho^{\alpha} u^{\prime \beta}+k n^{\prime}$ $=0$, therefore from equation (3.5), for a Darboux curve we can obtain

$$
\begin{equation*}
\tau=-\sin \psi\left(k_{n} k^{\prime} k^{-1}\right)\left(k_{n} \cos \psi-B k D\right)^{-1}, \tag{3.6}
\end{equation*}
$$

which implies.
Theorem 3.1. In an Euclidean space of three dimensions the torsion of a λ_{N}-curve, which is also a Darboux curve is given by (3.6)

Now we shall discuss some special cases.
Case I. If the vector $\lambda^{\prime \prime \prime}$ is parallel to vector β^{i}, with the help of equation (3.2), (3.4) and (3.5) we get $\tau=0$ and

$$
\begin{equation*}
\eta^{\alpha}=A^{\alpha}-D^{-1} k^{-1} \rho^{\alpha} . \tag{3.7}
\end{equation*}
$$

Hence we have:
Theorem 3.2. In an Euclidean space of three dimensions, if the vector $\lambda^{\prime \prime \prime}{ }^{i}$ is parallel to the vector β^{i}, the vector A^{α} is parallel to the vector ρ^{α} and the λ_{N}-curvature vector η_{α} satisfies $\eta_{\alpha} \mathrm{u}^{\prime \alpha}=0$ such that the torsion of the curve C vanishes identically.

Case II. If the vector $\lambda^{\prime \prime \prime}$ is perpendicular to vector β^{i}, with the help of equation (3.2), (3.4) and (3.5) we get

$$
\begin{equation*}
A^{\alpha}=D^{-1} k^{-1} \tau^{-1}\left[k^{-1} k^{\prime} \rho^{\alpha}+k_{n} d_{\beta}^{\alpha} u^{\beta}-k^{2} u^{\alpha \alpha}-\rho^{\alpha},{ }_{\beta} u^{\prime \beta}\right] \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau=(B k D)^{-1}\left(k_{n} k^{\prime} k^{-1}-k_{n}^{\prime}-d_{\alpha \beta} \rho^{\alpha} u^{\prime \beta}\right) \tag{3.9}
\end{equation*}
$$

From equation (3.8), by virtue of $\rho_{\alpha} u^{\prime \alpha}=0, \rho_{\alpha},{ }_{\beta} u^{\prime \alpha} u^{\prime \beta}=0$ and $k^{2}=k_{n}{ }^{2}+k_{g}{ }^{2}$, we get on simplification

$$
\begin{equation*}
D^{-1} k^{-1} \tau^{-1} k_{g}^{2}=0 \tag{3.10}
\end{equation*}
$$

which leads to $k_{g}=0$ or $k_{n}=k$, provided D, k and τ do not vanish.
Hence we have:
Theorem 3.3. In an Euclidean space of three dimensions, if the vector $\lambda^{\prime \prime \prime \prime}$ is perpendicular to the vector β^{i} such that D, k and τ do not vanish then the first curvature of the λ_{N}-curve is equal to the normal curvature.

From equation (3.9), for a Darboux curve, we can obtain $\tau=(B k D)^{-1} k_{n} k^{\prime} k^{-1}$, which leads to

Theorem 3.4. In an Euclidean space of three dimensions, if the vector $\lambda^{\prime \prime \prime}{ }^{i}$ is perpendicular to the vector β^{i} and the given curve C is both a λ_{N}-curve and a Darboux curve, then its torsion is given by $\tau=(B k D)^{-1} k_{n} k^{\prime} k^{-1}$.

λ_{w}-CuRvature.

Analogous to the well known definition of union curvature, let K_{N} be the λ_{N}-curvature of a curve C, i.e., the magnitude of the vector η^{α}, then we can obtain after some calculation

$$
\begin{align*}
K_{N}^{2}=A^{\alpha} A_{\alpha} & +2 D^{-1}\left[\tau^{-1} \sin \psi\left\{\left(\left(k-k_{n}\right) d_{\alpha \beta}+k^{-1} \rho_{\alpha, \beta}\right) A^{\alpha} u^{\prime \beta}-k^{-2} k^{\prime} \rho^{\alpha} A_{\alpha}\right\}\right. \\
& \left.-k^{-1} \rho^{\alpha} A_{\alpha} \cos \psi\right]+D^{-2}\left[\tau ^ { - 2 } \operatorname { s i n } ^ { 2 } \psi \left\{k^{2}-2 k_{n}{ }^{2}+k^{-4} k^{\prime 2} k_{g}{ }^{2}\right.\right. \\
& \left.+\left(k^{-2} \rho_{\alpha}, \delta \rho^{\alpha},{ }_{\beta}-2 k^{-2} k_{n} \rho^{\alpha}{ }_{\beta} d_{\alpha \delta}+k^{2} k_{n}{ }^{2} d_{\alpha \delta} d^{\alpha}{ }_{\beta}+2 \rho_{\delta, \beta}\right) u^{\beta \beta} u^{\prime \delta}\right\} \\
& +2 k^{-2} \tau^{-1} \sin \psi\left\{\cos \psi\left(k^{-1} k^{\prime} k_{g}{ }^{2}-\rho^{\alpha},{ }_{\beta} \rho_{\alpha} u^{\prime \beta}+k_{n} \rho^{\alpha} d_{\alpha \beta}{u^{\beta}}^{\prime}\right)\right. \\
& \left.\left.-k^{-1} \tau^{-1} k^{\prime} \rho^{\alpha} u^{\prime \beta} \sin \psi\left(p^{\alpha},{ }_{\beta}-k_{n} d^{\alpha}{ }_{\beta}\right)\right\}+k^{-2} k_{g}{ }^{2} \cos ^{2} \psi\right] . \tag{4.1}
\end{align*}
$$

From equation (4.1) we obtain
Theorem 4.1. In a three- dimensional Euclidean space $\lambda_{N^{-}}$curvature K_{N}, of a curve C is given by equation (4.1) and it vanishes for a λ_{N}-curve.

Curvature of a λ_{m} Curve,

$\mathbf{L}_{\text {et us assume that }}$

$$
\begin{equation*}
\beta^{i}=c \gamma^{i}+d \lambda^{\prime \prime \prime}{ }^{i} \tag{5.1}
\end{equation*}
$$

If θ is the angle between γ^{i} and $\lambda^{\prime \prime \prime \prime}$, we can easily obtain

$$
\begin{equation*}
c=-\cot \theta, \quad d=D \operatorname{cosec} \theta \tag{5.2}
\end{equation*}
$$

Substituting the values of c and d in (5.1) together with the value of β^{i}, γ^{i} and $\lambda^{\prime \prime \prime \prime}$, we get on simplification

$$
\begin{align*}
A^{\alpha}=(D k \operatorname{cosec} \theta)^{-1}\left\{\rho^{\alpha}-\tau^{-1} \cos \theta\right. & \left(k u^{\prime \alpha}+k^{-1} \rho^{\alpha},{ }_{\beta} u^{\prime \beta}\right) \\
& \left.\left.-d^{\alpha}{ }_{\beta} u^{\prime \beta}-k^{-2} k^{\prime} \rho^{\alpha}\right)\right\} \ldots \tag{5.3}
\end{align*}
$$

and

$$
\begin{equation*}
k_{n}=B k D \operatorname{cosec} \theta+k^{-1} \tau^{-1} \cos \theta\left(k_{n}^{\prime}+d_{\alpha \beta} \rho^{\alpha} u^{\beta}-k^{-1} k_{n} k^{\prime}\right) \tag{5.4}
\end{equation*}
$$

Multiplying equation (5.3) by $u^{\prime \alpha}$ and using $u^{\prime \alpha} \rho_{\alpha}=0, \rho_{\alpha}, \beta u^{\prime \beta} u^{\prime \alpha}=0, A_{\alpha} u^{\prime \alpha}=0$, we get on simplification $k=k_{n}$ or $k_{g}=0$. Substituting $k=k_{n}$ in (5.4), we get

$$
\begin{equation*}
k^{2}=(\tau D B)^{-1} \cos \theta d_{\alpha \beta} \rho_{\alpha} u^{\prime \beta}(\sin \theta-D B)^{-1} . \tag{5.5}
\end{equation*}
$$

If the given curve is a line of curvature Eisenhart [2], i.e., $d_{\alpha \beta} \rho^{\alpha} u^{\prime \beta}=0$, equation (5.5) gives $k=0$. Hence we have:

Theorem 5.1. In an Euclidean space of three dimensions, if λ_{N}-curve is also lines of curvature its curvature k vanishes.

Some properties of other curves

c.
ase I. If we are given a curve which satisfies the differential equation $\lambda^{i} x^{i}=0$ or alternatively $p_{\alpha} u^{\prime \alpha}=0$, i.e., if it is a C_{B}-cure Bhattacharya [1], we can obtain on differentiating this equation $\lambda^{\prime i} x^{\prime i}+\lambda^{i} \mathrm{x}^{\prime \prime \prime}=0$ or alternatively

$$
\begin{equation*}
\mu_{\alpha \beta} u^{\prime \alpha} u^{\prime \beta}+\left(p_{\alpha} \rho^{\alpha}+q k_{n}\right)=0 . \tag{6.1}
\end{equation*}
$$

If we assume that the given curve is also a hyper-asymptotic curve [3], i.e., $p_{\alpha} \rho^{\alpha}+q k_{n}$ $=0$, by virtue of equation (6.1) we get $\mu_{\alpha \beta} u^{\prime \alpha} u^{\prime \beta}=0$, which shows that the given curve is an N^{*}-curve Trivedi [6]. Hence we have:

Theorem 6.1. In a three dimensional Euclidean space the necessary and sufficient condition for the C_{B}-curves to be a hyper-asymptotic curve is that it be an N^{*} - curve.

Case II. If we assume that $\lambda^{\prime \prime i} X^{i}=0$, i.e., $N_{\alpha \beta} u^{\prime \alpha} u^{\prime \beta}=0$, we can obtain

$$
\begin{equation*}
\lambda^{\prime \prime \prime i} X^{i}-\lambda^{\prime \prime i} d^{\delta}{ }_{\alpha} u^{\prime \alpha} x^{i},{ }_{\delta}=0, \tag{6.2}
\end{equation*}
$$

which can be expressed as $B=M_{\delta} d^{\delta}{ }_{\alpha} u^{\prime \alpha}$. Hence we have:
Theorem 6.2.- In a three- dimensional Euclidean space, a curve C, satisfying $N_{\alpha \beta} \mathbf{u}^{\prime \alpha} u^{\prime \beta}$ $=0$, also satisfies $B=M_{\delta} d^{\delta}{ }_{\alpha} u^{\prime \alpha}$.

Case III. If for a curve C in an Euclidean space of three dimensions $\lambda^{\prime \prime i} x^{\prime i}=0$, we get on differentiation $\lambda^{\prime \prime \prime i} x^{\prime i}+\lambda^{\prime \prime \prime} \mathrm{x}^{\prime \prime \prime}=0$, which leads to

$$
\begin{equation*}
A_{\alpha} u^{\prime \alpha}+M_{\alpha} \rho^{\alpha}+N k_{n}=0 . \tag{6.3}
\end{equation*}
$$

If $A_{\alpha} u^{\prime \alpha}=0$, the given curve is a λ_{N}-curve, while if $M_{\alpha} \rho^{\alpha}+N k_{n}=0$, the given curve is a generalized asymptotic curve [4]. Hence we have:

Theorem 6.3. In a three-dimensional Euclidean space a curve C satisfying $\lambda^{\prime \prime i} x^{\prime i}=0$ or alternatively $M_{\alpha} u^{\prime \alpha}=0$, is a generalized asymptotic curve if and only if it is a λ_{N}-curve.

References

1. Bhattacharya, P.B., Curves on the surface of reference whose normal plane at any point contains the ray of the congruence through that point, Ganita, 11, 23-29 (1950).
2. Eisenhart, L.P., An introduction to differential geometry with use of tensor calculus, Princeton, (1947).
3. Mishra, R.S., Union curves and hyper-asymptotic curves on the surface of reference of a rectilinear congruence, Bull. Cal. Maths. Soc., 42, 213-216 (1950).
4. Rastogi, S.C. and Bajpai, P., Generalized and Super Darboux curves in an Euclidean space of three dimensions, Journal of Science, Technology\& Management, 01, 81-90 (2007).
5. Rastogi, S.C., A study of certain new curves in an Euclidean space of three dimensions-I (Under Publication)
6. Semin, F., On Darboux lines, Revue de la Faculte' des Sciences de l' universite'd, Istanbul, Ser. A, 17, 351-383 (1952).
