A STUDY OF CERTAIN NEW CURVES IN AN EUCLIDEAN SPACE OF THREE DIMENSIONS-I

BAJPAI PRADEEP, RASTOGI S.C.
Department of Mathematics, Bhabha Institute of Technology, Kanpur (D) U.P. (India)

RECEIVED : 24 September, 2015
In this paper I have defined a curve which is such that its osculating plane contains the vectors $\frac{d^{3} \lambda^{i}}{d s^{3}}$, where λ^{i} are the contra-variant components of a unit vector in the direction of the line ℓ of the congruence passing through a point P. We have called such a curve as λ_{0}-curve in an Euclidean space of three dimensions and studied some of its curvature properties.

Introduction

Let $S:=x^{i}=x^{i}\left(u^{\alpha}\right),(i=1,2,3$ and $\alpha=1,2)$, be the surface of reference of a rectilinear congruence, a line ℓ of which is given by the direction cosines

$$
\begin{equation*}
\lambda^{i}=\lambda^{i}(u \alpha), \quad \lambda^{i} \cdot \lambda^{i}=1 \tag{1.1}
\end{equation*}
$$

We assume that x^{i} and λ^{i} are continuous along with their partial derivatives up to the required oreder. At any point $P\left(x^{i}\right)$ of S, λ^{i} is expressible as [3]

$$
\begin{equation*}
\lambda^{i}=p^{\alpha} x_{a}^{i}+q X^{i} \tag{1.2}
\end{equation*}
$$

where p^{α} are the contra-variant components of a vector in S at P and q is a scalar function, X^{i} are the direction cosines of the normal to S at P and x_{α}^{i} denotes the covariant derivatives of x^{i} with respect to u^{α} based on the fundamental tensor of $S, g_{\alpha \beta}=x_{\alpha}^{i} \cdot x_{\beta}^{i}$.

The Gauss and Weingarten equations are given by Eisenhart [1] as follows:

$$
\begin{equation*}
x_{\alpha \beta}^{i}=d_{\alpha \beta} X^{i}, X_{\alpha}^{i}=-d_{\alpha \beta} g_{\beta \delta} x_{\delta}^{i} \tag{1.3}
\end{equation*}
$$

where $d_{\alpha \beta}$ is the second fundamental tensor of the surface S.
Let us consider a curve $C: x^{i}=x^{i}(s)$ on S, then the intrinsic derivatives of $x^{i}, \frac{d x^{i}}{d s}$ and $\frac{d^{2} x^{i}}{d s^{2}}$ are expressed as

$$
\begin{equation*}
x^{\prime i}=\frac{d x^{i}}{d s}=x_{, \alpha}^{i} u^{\prime \alpha}, x^{\prime \prime i}=\frac{d^{2} x^{i}}{d s^{2}}=\rho^{\alpha} x^{i},{ }_{\alpha}+X^{i} k_{n} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime \prime \prime \prime}=\left(\rho^{\alpha},{ }_{\beta}-k_{n} d_{\beta \theta} g^{\theta \alpha}\right) x^{i},{ }_{\alpha} u^{\beta}+\left(k_{n, \beta}+\rho^{\alpha} d_{\alpha \beta}\right) X^{i} u^{\beta} \tag{1.5}
\end{equation*}
$$

where primes indicate the differentiation with respect to arc-length s, p^{α} are the components of the geodesic curvature vector of the curve C in two dimensional Euclidean space and k_{α} is the normal curvature of the surface in the direction of the curve C [1]. For a normal
congruence equation (1.2) gives $p^{\alpha}=0$ and $q=1$, while for a congruence formed of tangents to a one parameter family of curves $q=0$ and p^{α} is a unit vector in a two dimensional Euclidean space.

Intrinsic derivatives of vectors λ^{t}

$S_{i m}$imilar to equations (1.4) and (1.5) we can also obtain for a vector λ^{i} in the direction of the curves of the congruence- λ, following;

Intrinsic derivatives

$$
\begin{equation*}
\lambda^{i}=\frac{d \lambda^{i}}{d s}=\lambda_{, \alpha}^{i} u^{\prime \alpha}=\left(\mu_{\alpha}^{\gamma} x_{, \gamma}^{i}+v_{\alpha} X^{i}\right) u^{\prime \alpha} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{\alpha}^{\gamma}=p^{\gamma},{ }_{\alpha}-q d_{\alpha \beta} g^{\beta \gamma}, v_{\alpha}=q,_{\alpha}+p^{\beta} d_{\alpha \beta} \tag{2.2}
\end{equation*}
$$

Differentiating $\lambda_{, \alpha}^{i}$ covariantly with respect to $\mathrm{u}^{\prime \beta}$, we get

$$
\begin{align*}
& \lambda_{, \alpha \beta}^{i}=M_{\alpha \beta}^{\gamma} x^{i}{ }_{, \gamma}+N_{\alpha \beta} X^{i}, \tag{2.3}\\
& M_{\alpha \beta}^{\gamma}=\mu_{\alpha, \beta}^{\gamma}-v_{\alpha} d_{\beta \theta} g^{\theta \gamma}, N_{\alpha \beta}=v_{\alpha, \beta}+\mu_{\alpha}^{\gamma} d_{\gamma \beta} \tag{2.4}
\end{align*}
$$

and
Since we know that λ^{i} is unit vector, therefore we can obtain $\lambda^{i} \cdot \lambda^{i}{ }_{, \alpha}=0$, which gives p_{γ} $\mu_{\alpha}^{\gamma}+q v_{\alpha}=0$. The intrinsic derivative of $\frac{d \lambda^{i}}{d s}$, represented by $\lambda^{\prime \prime i}$ along C can be obtained as follows:

$$
\begin{equation*}
\lambda^{\prime \prime \mathrm{i}}=\left(\mathrm{M}_{\alpha \beta}^{\gamma} \mathrm{u}^{\prime \alpha} u^{\prime \beta}+\mu_{\alpha}^{\gamma} u^{\prime \prime \alpha}\right) x^{i}{ }_{, y}+\left(\mathrm{N}_{\alpha \beta} u^{\prime \alpha} u^{\prime \beta}+v_{\alpha} u^{\prime \prime \alpha}\right) X^{i} \tag{2.5}
\end{equation*}
$$

where $p_{\gamma} M^{\gamma}{ }_{\alpha \beta}+q N_{\alpha \beta}+\mu_{\delta}^{\alpha} \mu_{\beta}^{\delta}+v_{\alpha} v_{\beta}=0$, which is a consequence of $p_{\gamma} \mu^{\gamma}{ }_{\alpha}+q v_{\alpha}=0$. From equation (2.3) we can get

$$
\begin{equation*}
\lambda_{, \alpha \beta \gamma}^{i}=\left(M_{\alpha \beta, \gamma}^{\theta}-N_{\alpha \beta} d_{\gamma \delta} g^{\delta \theta}\right) x_{, \theta}^{i}+X^{i}\left(M_{\alpha \beta}^{\theta} d_{\theta \gamma}+N_{\alpha \beta, \gamma}\right) \tag{2.6}
\end{equation*}
$$

Such that

$$
\begin{align*}
& q\left\{M_{\alpha \beta}^{\theta}\left(q d_{\theta \gamma}+\mu_{\theta \gamma}-p_{\theta, \gamma}\right)+M_{\beta \gamma}^{\theta} \mu_{\theta \alpha}-M_{\beta \theta}, \gamma \mu_{\alpha}^{\theta}\right\} \\
& -\mu_{\alpha}^{\theta} \mu_{\varphi}^{\beta} d_{\theta \gamma} p_{\varphi}-N_{\alpha \beta}\left(\mu_{\gamma}^{\theta} p_{\theta}+q p^{\theta} d_{\theta \gamma}+q q_{, \gamma}\right)=0 \tag{2.7}
\end{align*}
$$

The intrinsic derivative of $\frac{d^{2} \lambda^{i}}{d s^{2}}$ along C which is represented by $\lambda^{\prime \prime \prime}$ can be obtained in the following form

$$
\begin{equation*}
\lambda^{\prime \prime \prime}{ }^{\mathrm{i}}=\left(\mathrm{x}^{\mathrm{i}},{ }_{\gamma} \mathrm{A}^{\gamma}+\mathrm{B} \mathrm{X}^{\mathrm{i}}\right) \tag{2.8}
\end{equation*}
$$

where $\quad A^{\gamma}=\left[\mu_{\alpha}^{\gamma} u^{\prime \prime \prime}{ }^{\alpha}+\mu^{\prime \prime \prime} \alpha u^{\prime} \beta\left(2 M^{\gamma}{ }_{\alpha \beta}+M^{\gamma}{ }_{\beta \alpha}\right)+u^{\prime \alpha} u^{\beta \beta} u^{\prime \delta}\left(M^{\gamma}{ }_{\alpha \beta, \delta}-N_{\alpha \beta} d^{\gamma^{\prime}}\right)\right]$
and $\quad B=\left[v_{\alpha} u^{\prime \prime \prime \alpha}+u^{\prime \prime \alpha} u^{\prime \beta}\left(2 N_{\alpha \beta}+N_{\beta \alpha}\right)+u^{\prime \alpha} u^{\prime \beta} u^{\prime \delta}\left(d_{\gamma \delta} M^{\gamma}{ }_{\alpha \beta}+N_{\alpha \beta}, \delta\right)\right]$

λ_{0}-curves

Definition 3.1: A curve C on the surface S hall be called λ_{0}-curve in an Euclidean space of three dimensions if the osculating plane at any point P of C contains the vector $\lambda^{\prime \prime \prime}{ }^{i}$.

The equation of osculating plane at any point P of C can be written as [1]

$$
\begin{equation*}
\delta_{i j k}^{123}\left(x^{i}-x^{i}\right)\left(u^{\prime \sigma} x^{j},{ }_{\sigma}\right)\left(\rho^{\alpha} x^{k},{ }_{\alpha}+X^{k} k_{n}\right)=0 \tag{3.1}
\end{equation*}
$$

where ' x^{i} are current coordinates of a point in Euclidean space of three dimensions and ρ^{α}, the first curvature vector is expressed as [1]

$$
\begin{equation*}
\rho^{\alpha}=u^{\prime \prime \alpha}+\left\{^{\alpha}{ }_{\beta \gamma}\right\} u^{\beta} u^{\gamma} \tag{3.2}
\end{equation*}
$$

Now if $\lambda^{\prime \prime \prime}$ iies in the plane (3.1), equation ' $x^{i}=x^{i}+t \lambda^{\prime \prime \prime}$, must hold for all t. Hence we get

$$
\begin{equation*}
\delta_{i j k}^{123}\left(u^{\prime \sigma} x^{j},{ }_{\sigma}\right)\left(\rho^{\alpha} x^{k}{ }_{, \alpha}+X^{k} k_{\alpha}\right)\left(x^{i}{ }_{\gamma} A^{\gamma}+B X^{i}\right)=0 \tag{3.3}
\end{equation*}
$$

Using [1]

$$
\begin{equation*}
\delta_{i j k}^{123} X^{i} x^{j}{ }_{, \sigma} X^{k}=0, \delta_{i j k}^{123} x^{i}{ }_{\gamma} x^{i}{ }_{, \sigma} x^{k}{ }_{, \alpha}=0 \tag{3.4}
\end{equation*}
$$

In equation (3.3), we obtain on simplification

$$
\begin{equation*}
\delta_{i j k}^{123} X^{i}, x^{j},{ }_{\sigma} u^{\prime \sigma} x^{k},{ }_{\alpha}\left(B \rho^{\alpha}-k_{n} A^{\alpha}\right)=0 \tag{3.5}
\end{equation*}
$$

Summing (3.5) for σ and α and neglecting non-zero terms and using $e_{12}=-e_{21}=1$ and $e_{11}=e_{22}=0$, we obtain

$$
\begin{equation*}
e_{\sigma \alpha} u^{\prime \sigma}\left(B \rho^{\alpha}-k_{n} A^{\alpha}\right)=0 \tag{3.6}
\end{equation*}
$$

Hence we have:
Theorem 3.1: The differential equation of λ_{0}-curves, in an Euclidean space of three dimensions is given by equation (3.6)

If either C be a geodesic or $B=0$, the equation (3.6) reduces to

$$
\begin{equation*}
e_{\sigma \alpha} u^{\prime \sigma} A^{\alpha}=0 \tag{3.7}
\end{equation*}
$$

which implies that either $k_{n}=0$ or

$$
\begin{equation*}
e_{\sigma \alpha} u^{\prime \sigma} A^{\alpha}=0 \tag{3.8}
\end{equation*}
$$

Using equation (3.2) for a geodesic curve, equation (3.8) can be represented by

$$
\begin{align*}
& \sigma_{\alpha \gamma} u^{\prime \sigma} u^{\prime \theta} u^{\prime \varphi} u^{\prime \delta}\left[2\left\{^{\alpha}{ }_{\beta \delta}\right\}\right\}\left\{^{\beta}{ }_{\theta \varphi}\right\} \mu_{\alpha}^{\gamma}-\mu_{\beta}^{\gamma}\left\{^{\beta}{ }_{\theta \varphi}\right\}, \delta, \\
& \quad-\left\{\left\{_{\theta \varphi}^{\alpha}\right\}\left({ }^{\mu} \gamma_{\alpha, \delta}+M_{\alpha \delta}^{\prime}+M_{\delta \alpha}^{\gamma}-d_{\delta \beta} g^{\beta \gamma} v_{\alpha}\right)+M_{\theta \varphi, \delta}^{\gamma}-N_{\theta \varphi} d_{\delta \alpha} g^{\alpha \gamma}\right]=0 \tag{3.9}
\end{align*}
$$

If we consider that the λ_{0}-curves are either asymptotic lines or satisfy equation (3.8), equation (3.6) leads to $e_{\sigma \alpha} u^{\prime \sigma} B \rho^{\alpha}=0$, i.e., either it is a geodesic curve or $B=0$, i.e., it is a generalized Darboux curve Rastogi and Bajpai [2]. Hence we have:

Theorem 3.2: The necessary and sufficient condition for a λ_{0}-curve to be either a geodesic curve i.e., $u^{1} \rho^{2}=u^{\prime 2} \rho^{1}$ or be a generalized Darboux curve, is that it is either an asymptotic line or satisfies equation (3.8).

λ_{0}-CURVATURE of a curve on S

The equation (3.6) is the single differential equation of λ_{0}-curves. The equation of λ_{0}-curves can alternatively be expressed as

$$
\begin{align*}
& T^{1} \equiv B \rho^{1}+k_{n} \mathrm{e}_{\sigma \alpha} u^{\prime \sigma} A^{\alpha} g_{2 \beta} u^{\beta \beta}=0 \tag{4.1}\\
& T^{2} \equiv B \rho^{2}-k_{n} e_{\sigma \alpha} u^{\prime \sigma} A^{\alpha} g_{1 \beta} u^{\beta}=0 \tag{4.1}
\end{align*}
$$

In analogy with the definition of union curvature [3], we define the vector with contravariant components T^{α} as the λ_{0}-curvature vector and the magnitude of this vector shall be called λ_{0}-curvature. From equation (3.1), we can observe the following

Theorem 4.1: The λ_{0}-curvature vector in an Euclidean space of three dimensions is a null vector at each point of the λ_{0}-curve.

Using $\varepsilon_{\alpha \beta}=\left(x^{i}{ }_{, \alpha} x^{i}{ }_{, \beta} X^{j}\right)=g e_{\alpha \beta}$, the λ_{0}-curvature of the curve is defined as

$$
\begin{equation*}
K_{0}=\varepsilon_{\alpha \beta} u^{\prime \alpha} \mathrm{T}^{\beta} \tag{4.2}
\end{equation*}
$$

Since $\varepsilon_{\alpha \beta} u^{\prime \alpha} u^{\prime \beta}=0$, therefore with the help of equation (4.1), we can write (4.2) as

$$
\begin{equation*}
K_{0}=\varepsilon_{\alpha \beta} u^{\prime \alpha}\left(B \rho^{\beta}-k_{n} A^{\beta}\right) \tag{4.3}
\end{equation*}
$$

From equation (4.3), we can easily obtain.
Theorem 4.2: The ratio of K_{0}-curvature of a generalized Darboux curve and normal curvature to the surface is given by $\varepsilon_{\alpha \beta} u^{\prime \alpha} A^{\beta}$.

If $k_{g}=\varepsilon_{\alpha \beta} u^{\prime \alpha} \rho^{\beta}$, be the geodesic curvature, from equation (4.3), we can observe that the geodesic curvature along a λ_{0}-curve $\left(K_{0}=0\right)$, is given by

$$
\begin{equation*}
B k_{g}=k_{n} \varepsilon_{\alpha \beta} u^{\prime \alpha} A^{\beta} \tag{4.4}
\end{equation*}
$$

which is analogy to the geometrical interpretation of union curvature, Springer [3], gives
Theorem 4.3: The K_{0}-curvature of a curve C at any point P on a surface of reference S of a rectilinear congruence is the curvature of C obtain by projecting C onto the tangent plane to S at P, in the direction of $\lambda^{\prime \prime \prime}{ }^{i}$.

Curvature of a λ_{0}-Curve

Let α^{i}, β^{i} and γ^{i} be respectively the direction cosines of unit tangent, principal normal and binormal to a λ_{0}-curve C, then we can express β^{i} as

$$
\begin{equation*}
\beta^{i}=a \alpha^{i}+b \lambda^{\prime \prime \prime} \tag{5.1}
\end{equation*}
$$

Let ψ be the angle between the vectors α^{i} and $\lambda^{\prime \prime \prime}$, then for $D\left|\lambda^{\prime \prime \prime}\right|=1$,

$$
\begin{equation*}
a=-\cot \psi, b=D \operatorname{cosec} \psi \tag{5.2}
\end{equation*}
$$

From equations (5.1) and (5.2), we get

$$
\begin{equation*}
\beta^{i}=\operatorname{cosec} \psi\left(D \lambda^{\prime \prime \prime}-\alpha^{i} \cos \psi\right) \tag{5.3}
\end{equation*}
$$

Since we know that $x^{\prime \prime \prime}=k \beta^{i}$, therefore substituting from equation (1.3), we can write

$$
\begin{equation*}
\rho^{\alpha} x^{i},{ }_{\alpha}+X^{i} k_{n}=k \operatorname{cosec} \psi\left[D\left(x^{i},{ }_{\alpha} A^{\alpha}+B X^{i}\right)-x^{i},{ }_{\alpha} u^{\prime \alpha} \cos \psi\right] \tag{5.4}
\end{equation*}
$$

Multiplying equation (5.4) by $X^{i}, g^{\delta \beta} x^{i},{ }_{\delta} \varepsilon_{\tau \beta} u^{\tau \tau}$ and $\lambda^{\prime \prime i}$ respectively and solving, we get the following expressions for the curvature k of a λ_{0}-curve

$$
\begin{align*}
& k=(B D)^{-1} k_{n} \sin \psi \tag{5.5}\\
& k=\left(D \varepsilon_{\tau \beta} u^{\prime \tau} A^{\beta}\right)^{-1} k_{g} \sin \psi \tag{5.6}
\end{align*}
$$

and $\quad k=\sin \psi\left(\rho^{\alpha} A^{\alpha}+B k_{n}\right)\left[A^{\alpha}\left(D A^{\alpha}-u^{\prime \alpha} \cos \psi\right)+D B^{2}\right]^{-1}$
Multiplying equation (5.1) by β_{i}, we can obtain on simplification

$$
\begin{equation*}
k=b\left(\rho^{\alpha} A^{\alpha}+B k_{n}\right) \tag{5.8}
\end{equation*}
$$

Substituting the value of b from equation (5.2), we get

$$
\begin{equation*}
k=D \operatorname{cosec} \psi\left(\rho^{\alpha} A^{\alpha}+B k_{n}\right) \tag{5.9}
\end{equation*}
$$

Since D and $\operatorname{cosec} \psi$ can not vanish, therefore from equation (5.9), we can obtain
Theorem 5.1: The necessary and sufficient condition for the curvature k of a λ_{0}-curve to vanish is given by the vanishing of $p^{\alpha} A_{\alpha}+B k_{n}$

Since we know that $-\left(k \alpha^{i}+\tau \gamma^{i}\right)=k^{-1} x^{"{ }^{\prime}}$, therefore using equation (1.5), we can obtain

$$
\begin{align*}
\gamma^{I}=-(k \tau)^{-1} u^{, \beta}\{ & A^{\alpha}\left(\rho^{\alpha}{ }_{, \beta}-k_{n} d^{\alpha}{ }_{\beta}\right) x^{i},{ }_{\alpha} \\
& +B\left(K_{n, \beta}+\rho^{\alpha} d_{\alpha \beta} X^{i}\right\}-k \tau^{-1} x^{i}{ }_{, \alpha} u^{, \alpha} \tag{5.10}
\end{align*}
$$

Which leads to

$$
\begin{equation*}
K^{2}=-\left[u^{\rho \beta}\left\{A_{\alpha}\left(\rho^{\alpha}{ }_{, \beta}-k_{n} d^{\alpha}{ }_{\beta}\right)+B\left(k_{n, \beta}+\rho^{\alpha} d_{\alpha \beta}\right)\right\} /\left(A_{\alpha} u^{\prime \alpha}\right)\right. \tag{5.11}
\end{equation*}
$$

Applying Theorem 5.1, to equation (5.11), we obtain on simplification

$$
\begin{equation*}
\left\{\rho^{\alpha}\left(A_{\alpha, \beta}-B d_{\alpha \beta}\right)+k_{n}\left(B_{, \beta}+A_{\alpha} d^{\alpha}{ }_{\beta}\right)\right\} u^{\rho \beta}=0 \tag{5.12}
\end{equation*}
$$

Hence we have:
Theorem 5.2: The necessary and sufficient condition for the curvature k of a $\lambda_{0}-$ curve to vanish is given by (5.12).

Torsion of a λ_{0}-Curve

Differentiating the identity $\gamma^{i}=\alpha^{i} x \beta^{I}$, with respect to s and using equation (5.3) and the Frenet formula $\mathrm{d} \gamma^{\mathrm{i}} / \mathrm{ds}=\tau \beta^{\mathrm{I}}$ Eisenhart [1], we get

$$
\begin{align*}
\tau\left(D \lambda "^{\prime \prime}-\cos \psi d x^{i} / d s\right)=\left\{\left(d x^{i} / d s\right) x \lambda^{",}\right\} & \left\{D^{\prime}-D \cot \psi(d \psi / \mathrm{ds})\right\} \\
& +D\left\{d^{2} x^{i} / d s^{2} x \lambda^{\prime,,^{i}}+\left(d x^{i} / d s\right) x \lambda^{(4) i}\right\} \tag{6.1}
\end{align*}
$$

Substituting the values of $\lambda^{\cdots}{ }^{\prime \prime}$ and $d^{2} x^{i} / d s^{2}$ in equation (6.1) and multiplying the resulting equation X^{i}, we obtain on simplification the torsion of a λ_{0}-curve as follows:

$$
\begin{align*}
& \tau(B D)^{-1} \varepsilon_{\alpha \beta}\left[\left\{D^{\prime}-D \cot \psi(d \psi / d s)\right\} A^{\beta} u^{\alpha}\right. \\
& \left.\quad+D\left\{A^{\beta} \rho^{\alpha}+\left(A^{\alpha},{ }_{\theta}-B d^{\alpha}{ }_{\theta}\right) u^{, \theta} u^{, \beta}\right\}\right] \tag{6.2}
\end{align*}
$$

With the help of equation (5.6) and (6.2), we can obtain a relationship between the curvature k and the torsion τ.

Some special cases

Cash I: Normal Congruence. Let us consider that the congruence be normal, then in that case we have $p_{\alpha}=0, q=1, \lambda^{i}=X^{i}, \mu^{\gamma}{ }_{\alpha}=-d^{\gamma}{ }_{\alpha} v_{\alpha}=0, M^{\gamma}{ }_{\alpha \beta}=-d^{\gamma}{ }_{\alpha, \beta}, N_{\alpha \beta}=-d^{\gamma}{ }_{\alpha} d_{\gamma \beta}$ and equation (2.6) can be expressed as

$$
\begin{align*}
& e_{\sigma \alpha} u^{, \sigma}\left[k_{n} u^{", \gamma} d^{\alpha}{ }_{\gamma}-u^{\prime \prime} u^{, \beta}\left\{\rho^{\alpha}\left(2 d^{\prime \prime}{ }_{\delta} d_{\gamma \beta}+d^{\prime}{ }_{\beta} d^{\gamma}{ }_{\delta}\right)\right.\right. \\
&\left.-k_{n}\left(2 d^{\alpha}{ }_{\delta, \beta}+d^{\alpha}{ }_{\beta, \delta, \delta}\right)\right\}-u^{\prime \theta} u^{\beta \beta} u^{\prime \delta}\left\{\rho^{\alpha}\left(d_{\gamma \delta} d^{\gamma}{ }_{\theta, \beta}+d^{\gamma}{ }_{\theta} d_{\gamma \beta, \delta}+d_{\theta, \delta}^{\prime} d_{\gamma \beta}\right)\right. \\
&\left.\left.\quad-k_{n}\left(d^{\alpha}{ }_{\theta, \beta, \delta}-d^{\alpha}{ }_{\delta} d^{\prime}{ }_{\theta} d_{\gamma \beta}\right)\right\}\right] \quad \ldots(6.3) \tag{6.3}
\end{align*}
$$

Hence we have

Theorem 7.1: For a normal congruence in an Euclidean space of three dimensions; λ_{0}-curves satisfy equation (7.1).

Case II : Congruence formed by tangents to a one parameter family of curves. In such a case, we have $q=0, \rho^{\alpha}$ is a unit vector, $\lambda^{i}=x^{i},{ }_{\alpha} \rho^{\alpha}, u^{\gamma}{ }_{\alpha}=\rho^{\gamma}{ }_{\alpha}, v_{\alpha}=\rho^{\beta} d_{\alpha \beta}$ and hence equation (3.6) can be expressed as

$$
\begin{align*}
& e_{\sigma \alpha} u^{\prime \sigma}\left[u^{\prime \prime \prime \gamma}\left(d_{\gamma \beta} \rho^{\alpha} p^{\beta}-k_{n} \rho^{\alpha}{ }_{, \gamma}\right)+u^{\prime \prime \delta} u^{\beta}\left\{\rho ^ { \alpha } \left(2 \rho^{\gamma}{ }_{, \delta} d_{\gamma \beta}+2\left(\rho^{\theta} d_{\delta \theta}\right),{ }^{\beta}\right.\right.\right. \\
& \left.+\rho^{\gamma}{ }_{, \beta} d_{\gamma \delta}+\left(\rho^{\theta} \cdot d_{\beta \theta}\right),{ }_{\delta}\right)-k_{n}\left(2 \rho^{\alpha},{ }_{\delta, \beta}-2 \rho^{\theta} d_{\delta \theta} d^{\alpha}{ }_{\beta}+\rho^{\alpha}{ }_{, \beta, \delta}\right. \\
& \left.\left.\rho^{\theta} d_{\beta \theta} d^{\alpha}{ }_{\delta}\right)\right\}+u^{\prime \varphi} u^{\beta} u^{\prime \delta}\left\{\left\{\rho^{\alpha} d_{\gamma \delta}\left(\rho^{\gamma},{ }_{\varphi, \beta}-\rho^{\theta} d_{\varphi \theta} d^{\prime}{ }_{\beta}\right)+\rho^{\alpha}\left(\rho^{\gamma}{ }_{, \varphi, \delta} d_{\gamma \beta}\right.\right.\right. \\
& \left.\left.+\rho^{\gamma}{ }_{, \varphi} d_{\gamma \beta, \delta}+\left(\rho^{\theta} d_{\varphi \theta}\right)_{, \beta, \delta}\right)\right\}-k_{n}\left\{\rho^{\alpha}{ }_{, \varphi, \beta, \delta}-\rho^{\theta}{ }_{, \delta} d_{\varphi \theta} d^{\alpha}{ }_{\beta}-\rho^{\theta} d_{\varphi \theta, \delta}\right. \\
& \left.\left.\left.d^{\alpha}{ }_{\beta}-\rho^{\theta} \cdot d_{\varphi \theta} d^{\alpha}{ }_{\beta, \delta}-d^{\alpha}{ }_{\delta}\left(\rho \theta, \varphi \operatorname{d} \beta+\left(\rho^{\theta} d_{\varphi \theta}\right),{ }_{\beta}\right)\right\}\right\}\right]=0 \tag{6.4}
\end{align*}
$$

Hence we have:
Theorem 7.2: In an Euclidean space of three dimensions, for a congruence formed by tangents to a one parameter family of curves, λ_{0}-curves satisfy equation (7.2).

Reference

1. Eisenhart, L.P., An introduction to differential geometry with use to tensor calculus, Princeton, (1947).
2. Rastogi, S.C. and Bajpai, P., Generalized and super Darboux curves in an Euclidean space of three dimensions, Journal of Science, Technology and Management, 1, 81-90 (2007).
3. Springer, C.E., Union curves and union curvature, Bull. Amer. Math. Soc., 51, 686-691 (1945).
4. Springer, C.E., Union torsion of a curve on a surface, Amer. Math. Monthly, 54, 259 - 262 (1947).
