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In this paper I have defined a curve which is such that its 

osculating plane contains the vectors 
3

3

id

ds
, where 

i
 are 

the contravariant components of a unit vector in the 

direction of the line  of the congruence passing through a 
point P. We have called such a curve as 0curve in an 
Euclidean space of three dimensions and studied some of 
its curvature properties. 

 

INTRODUCTION 

Let S : = xi = xi (u), (i = 1, 2, 3 and  = 1, 2), be the surface of reference of a rectilinear 

congruence, a line  of which is given by the direction cosines  

     i = i (u),   i  i = 1   … (1.1) 

We assume that xi and i are continuous along with their partial derivatives up to the 
required oreder. At any point P (xi) of S, i is expressible as [3] 
     i = p xi

a + q Xi  … (1.2) 

where p are the contra-variant components of a vector in S at P and q is a scalar function, Xi 
are the direction cosines of the normal to S at P and xi

 denotes the covariant derivatives of xi 
with respect to u based on the fundamental tensor of S, g = xi

  x
i
. 

 The Gauss and Weingarten equations are given by Eisenhart [1] as follows: 

     xi
 = d X

i, Xi
 =  d g x

i
  … (1.3) 

where d is the second fundamental tensor of the surface S. 

 Let us consider a curve C : xi = xi (s) on S, then the intrinsic derivatives of xi, 
idx

ds
 and 

2

2

id x

ds
 are expressed as 

   x'i = 
idx

ds
= xi

, u', x''i = 
2

2

id x

ds
= xi,  + Xi kn, … (1.4) 

and   x'''i = (,   kn d  g
) xi,  u' + (kn,  +  d) X

i u'   … (1.5) 

where primes indicate the differentiation with respect to arclength s, p are the components 
of the geodesic curvature vector of the curve C in two dimensional Euclidean space and k is 
the normal curvature of the surface in the direction of the curve C [1]. For a normal 
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congruence equation (1.2) gives p = 0 and q = 1, while for a congruence formed of tangents 
to a one parameter family of curves q = 0 and p is a unit vector in a two dimensional 
Euclidean space. 

INTRINSIC DERIVATIVES OF VECTORS I 

Similar to equations (1.4) and (1.5) we can also obtain for a vector i in the direction of 

the curves of the congruence-, following; 

 Intrinsic derivatives 

   'i = 
id

ds


 = i, u' = (µ

 x
i, + vX

i) u', … (2.1) 

where  µ
 = p,   q d g

, v = q, + p d  … (2.2) 

 Differentiating i, covariantly with respect to u', we get   

   i,  = M  x
i, + N X i, … (2.3) 

and   M 
 = µ

,   v d g
, N = v,  + µ

 d  … (2.4) 

Since we know that i is unit vector, therefore we can obtain i  i, = 0, which gives p 

µ
 + q v = 0. The intrinsic derivative of 

id

ds


, represented by ''i along C can be obtained as 

follows: 

   ''i = (M
 u' u' + µ

 u'') xi,y + (N u' u' + v u'')Xi  (2.5) 

where p M
 
 + q N + µ

 µ

 + v v = 0, which is a consequence of  pµ


 + qv = 0. From 

equation (2.3) we can get 

   i, = (M
,   N d g

) xi, + Xi (M
 d + N, ) … (2.6) 

Such that  

   q{M
 (q d + µ  p,) + M

 µ  M,  µ

} 

    µ
 µ

 d p  N (µ

 p + q p d + q q,) = 0 … (2.7) 

The intrinsic derivative of 
2

2

id

ds


along C which is represented by '''i can be obtained in 

the following form 

  '''i = (xi, A
 + B Xi) … (2.8) 

where A = [µ
 u''' + µ''' u' (2M  + M ) + u' u' u' (M 

,  N d

)]  … (2.9) 

and  B = [v u''' + u'' u' (2N + N) + u' u' u' (d M
 
 + N,)] … (2.10) 

0CURVES 

Definition 3.1: A curve C on the surface S hall be called 0curve in an Euclidean space 

of three dimensions if the osculating plane at any point P of C contains the vector '''i. 

 The equation of osculating plane at any point P of C can be written as [1] 
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   123
i j k    ('xi  xi) (u' xj,) (

 xk, + Xk kn) = 0 … (3.1) 

where 'xi are current coordinates of a point in Euclidean space of three dimensions and , the 
first curvature vector is expressed as [1] 

      = u'' + { } u' u'  … (3.2) 

Now if '''i lies in the plane (3.1), equation 'xi = xi + t '''i, must hold for all t. Hence we 
get 

   123
i j k     (u' xj,) (

 xk, + Xk k) (x
i, A

 + B Xi) = 0 … (3.3) 

Using [1] 

   123
i j k     Xi xj, X

k = 0, 123
i j k     xi, x

i, x
k, = 0 … (3.4) 

In equation (3.3), we obtain on simplification  

   123
i j k     Xi, xj, u' xk, (B   kn A

) = 0 … (3.5) 

 Summing (3.5) for  and  and neglecting nonzero terms and using e12 =  e21 = 1 and 
e11 = e22 = 0, we obtain  

   e  u' (B   kn A
) = 0 … (3.6) 

 Hence we have: 

 Theorem 3.1: The differential equation of 0curves, in an Euclidean space of three 
dimensions is given by equation (3.6) 

 If either C be a geodesic or B = 0, the equation (3.6) reduces to  

     e  u' A = 0 … (3.7) 

which implies that either kn = 0 or 

     e  u' A = 0 … (3.8) 

 Using equation (3.2) for a geodesic curve, equation (3.8) can be represented by 

   u' u' u' u' [2{ } { } µ
  µ

 {
 }, 

   { } (µ, + M
 + M 

  d g
 v) + M 

,  N d g
] = 0 … (3.9) 

 If we consider that the 0curves are either asymptotic lines or satisfy equation (3.8), 
equation (3.6) leads to e  u' B  = 0, i.e., either it is a geodesic curve or B = 0, i.e., it is a 
generalized Darboux curve Rastogi and Bajpai [2]. Hence we have: 

 Theorem 3.2: The necessary and sufficient condition for a 0curve to be either a 
geodesic curve i.e., u'1 2 = u'2 1 or be a generalized Darboux curve, is that it is either an 
asymptotic line or satisfies equation (3.8). 

0CURVATURE OF A CURVE ON S  

The equation (3.6) is the single differential equation of 0curves. The equation of 

0curves can alternatively be expressed as 

     T1  B 1 + kn e  u' A g2  u' = 0 … (4.1) (i) 

     T2  B 2  kn e  u' A g1  u' = 0 … (4.1) (ii) 
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In analogy with the definition of union curvature [3], we define the vector with 
contravariant components T as the 0curvature vector and the magnitude of this vector shall 
be called 0curvature. From equation (3.1), we can observe the following  

Theorem 4.1: The 0curvature vector in an Euclidean space of three dimensions is a 
null vector at each point of the 0curve. 

Using  = (xi, x
i, X

j) = g e, the 0curvature of the curve is defined as 

     K0 =  u' T  … (4.2) 

Since  u' u' = 0, therefore with the help of equation (4.1), we can write (4.2) as 

     K0 =  u' (B   kn A
) … (4.3) 

From equation (4.3), we can easily obtain. 

Theorem 4.2: The ratio of K0curvature of a generalized Darboux curve and normal 
curvature to the surface is given by  u' A. 

If kg =  u' , be the geodesic curvature, from equation (4.3), we can observe that the 
geodesic curvature along a 0curve (K0 = 0), is given by 

     B kg = kn  u' A  … (4.4) 

which is analogy to the geometrical interpretation of union curvature, Springer [3], gives 

Theorem 4.3: The K0curvature of a curve C at any point P on a surface of reference S of 
a rectilinear congruence is the curvature of C obtain by projecting C onto the tangent plane to 
S at P, in the direction of '''i. 

CURVATURE OF A 0CURVE 

Let i, i and i be respectively the direction cosines of unit tangent, principal normal 

and binormal to a 0curve C, then we can express i as 

     i = a i + b '''i  … (5.1) 

Let  be the angle between the vectors i and '''i, then for D |'''i| = 1, 

     a =  cot , b = D cosec  … (5.2) 

From equations (5.1) and (5.2), we get 

     i = cosec  (D '''i  i cos ) … (5.3) 

Since we know that x''i = k i, therefore substituting from equation (1.3), we can write  

   xi, + Xi kn = k cosec  [D (xi, A
 + B Xi)  xi, u' cos ] … (5.4) 

Multiplying equation (5.4) by Xi, g xi,  u' and '''i respectively and solving, we get 
the following expressions for the curvature k of a 0curve 

     k = (BD)–1 kn sin  … (5.5) 

     k = (D  u' A)–1 kg sin  … (5.6) 

and   k = sin  ( A + B kn) [A
 (DA  u' cos ) + DB2]–1 (5.7)  

 Multiplying equation (5.1) by i, we can obtain on simplification 

     k = b ( A + B kn) … (5.8) 
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 Substituting the value of b from equation (5.2), we get 

     k = D cosec  ( A + B kn)  … (5.9) 

 Since D and cosec  can not vanish, therefore from equation (5.9), we can obtain  

 Theorem 5.1: The necessary and sufficient condition for the curvature k of a 0curve to 
vanish is given by the vanishing of p A + B kn  

 Since we know that  (ki + i) = k1 x”’i, therefore using equation (1.5), we can obtain  

     `I =  (k)1 u’ {A(,  knd

) x

i, 

      + B (Kn,  + d X
i}  k1 xi,u’      … (5.10) 

Which leads to  

   K² = [u’ {A (
,  knd


) + B (kn, + d)}/(Au’) … (5.11) 

 Applying Theorem 5.1, to equation (5.11), we obtain on simplification 

   { (A,  B d) + kn (B, + Ad

)} u’ = 0 … (5.12) 

 Hence we have:  

Theorem 5.2: The necessary and sufficient condition for the curvature k of a 0curve to 
vanish is given by (5.12). 

TORSION OF A 0CURVE 

Differentiating the identity i = ixI, with respect to s and using equation (5.3) and the 

Frenet formula di/ds = I Eisenhart [1], we get 

    (D”’I  cos  dxi/ds) = {(dxi/ds)x”’i} {D’  D cot  (d /ds)}  

      + D{d²xi/ds²x”’i + (dxi/ds)x(4)i} … (6.1) 

Substituting the values of ””I and d² xi/ds² in equation (6.1) and multiplying the resulting 
equation Xi, we obtain on simplification the torsion of a 0curve as follows:  

    (BD)1 [{D’ D cot  (d /ds)} Au’ 

                     + D{A + (A,   B d 
) u’ u’}]. … (6.2) 

 With the help of equation (5.6) and (6.2), we can obtain a relationship between the 
curvature k and the torsion .  

SOME SPECIAL CASES 

Cash I: Normal Congruence. Let us consider that the congruence be normal, then in 

that case we have p = 0, q = 1, i = Xi, µ
, =  d  v = 0, M

 =  d ,, N =  d d and 
equation (2.6) can be expressed as 

   eu’ [knu”’ d  u”u’ {(2d d + d d

) 

                    kn (2d,  + d, )}  u' u' u' { (d d

,  + d d ,  + d,  d)  

                                               kn (d

, ,   d d


 d)}] … (6.3) 

 Hence we have 
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 Theorem 7.1: For a normal congruence in an Euclidean space of three dimensions; 
0curves satisfy equation (7.1). 

 Case II : Congruence formed by tangents to a one parameter family of curves. In 
such a case, we have q = 0,  is a unit vector, i = xi,  

, u = , v =  d and hence 
equation (3.6) can be expressed as 

   e u' [u''' (d 
 p  kn 

,) + u'' u' { (2, d + 2( d),
     

   + , d + (  d), )  kn (2
, ,   2 d d


 + ,,  

    d d

)} + u' u' u' {{d (

, ,    d d

) + (, ,  d  

   + , d, + (d),,)}  kn{


,,,  , d d

   d ,   

   d    d d

,  d (,  d + ( d), )}}] = 0 … (6.4) 

Hence we have: 

Theorem 7.2: In an Euclidean space of three dimensions, for a congruence formed by 
tangents to a one parameter family of curves, 0curves satisfy equation (7.2). 
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