A STUDY OF CERTAIN NEW CURVES IN AN EUCLIDEAN SPACE OF THREE DIMENSIONS-I

BAJPAI PRADEEP, RASTOGI S.C.

Department of Mathematics, Bhabha Institute of Technology, Kanpur (D) U.P. (India)

RECEIVED : 24 September, 2015

In this paper I have defined a curve which is such that its

osculating plane contains the vectors $\frac{d^3\lambda^i}{ds^3}$, where λ^i are

the contra–variant components of a unit vector in the direction of the line ℓ of the congruence passing through a point *P*. We have called such a curve as λ_0 –curve in an Euclidean space of three dimensions and studied some of its curvature properties.

INTRODUCTION

Let $S := x^i = x^i$ (u^{α}), (i = 1, 2, 3 and $\alpha = 1, 2$), be the surface of reference of a rectilinear congruence, a line ℓ of which is given by the direction cosines

$$\lambda^{i} = \lambda^{i} (u\alpha), \quad \lambda^{i} \cdot \lambda^{i} = 1 \qquad \dots (1.1)$$

We assume that x^i and λ^i are continuous along with their partial derivatives up to the required oreder. At any point $P(x^i)$ of S, λ^i is expressible as [3]

$$p^{\alpha} x_a^i + q X^i \qquad \dots (1.2)$$

where p^{α} are the contra-variant components of a vector in *S* at *P* and *q* is a scalar function, X^{i} are the direction cosines of the normal to *S* at *P* and x^{i}_{α} denotes the covariant derivatives of x^{i} with respect to u^{α} based on the fundamental tensor of *S*, $g_{\alpha\beta} = x^{i}_{\alpha} \cdot x^{i}_{\beta}$.

The Gauss and Weingarten equations are given by Eisenhart [1] as follows:

$$x^{i}_{\alpha\beta} = d_{\alpha\beta} X^{i}, X^{i}_{\alpha} = -d_{\alpha\beta} g_{\beta\delta} x^{i}_{\delta} \qquad \dots (1.3)$$

where $d_{\alpha\beta}$ is the second fundamental tensor of the surface *S*.

 $\lambda^i =$

Let us consider a curve $C : x^i = x^i$ (s) on S, then the intrinsic derivatives of x^i , $\frac{dx^i}{ds}$ and

 $\frac{d^2x^i}{ds^2}$ are expressed as

$$x^{i} = \frac{dx^{i}}{ds} = x^{i}_{,\alpha} u^{\alpha}, x^{n} = \frac{d^{2}x^{i}}{ds^{2}} = \rho^{\alpha} x^{i}_{,\alpha} + X^{i} k_{n}, \qquad \dots (1.4)$$

and

$$x^{\prime\prime\prime} = (\rho^{\alpha}, {}_{\beta} - k_n \, d_{\beta \theta} \, g^{\theta \alpha}) \, x^i, {}_{\alpha} \, u^{\prime\beta} + (k_{n,\,\beta} + \rho^{\alpha} \, d_{\alpha\beta}) \, X^i \, u^{\prime\beta} \qquad \dots (1.5)$$

where primes indicate the differentiation with respect to arc-length s, p^{α} are the components of the geodesic curvature vector of the curve C in two dimensional Euclidean space and k_{α} is the normal curvature of the surface in the direction of the curve C [1]. For a normal 152/M015 congruence equation (1.2) gives $p^{\alpha} = 0$ and q = 1, while for a congruence formed of tangents to a one parameter family of curves q = 0 and p^{α} is a unit vector in a two dimensional Euclidean space.

INTRINSIC DERIVATIVES OF VECTORS λ^{I}

Similar to equations (1.4) and (1.5) we can also obtain for a vector λ^{i} in the direction of the curves of the congruence- λ , following;

Intrinsic derivatives

$$\lambda^{i} = \frac{d\lambda^{i}}{ds} = \lambda^{i}_{,\alpha} u^{\alpha} = (\mu^{\gamma}_{\alpha} x^{i}_{,\gamma} + \nu_{\alpha} X^{i}) u^{\alpha}, \qquad \dots (2.1)$$

where

Differentiating $\lambda^{i}_{,\alpha}$ covariantly with respect to u^{β} , we get

$$\lambda^{i}_{,\alpha\beta} = M^{\gamma}_{\ \alpha\beta} x^{i}_{,\gamma} + N_{\alpha\beta} X^{i}, \qquad \dots (2.3)$$

and

$$M^{\gamma}{}_{\alpha\beta} = \mu^{\gamma}{}_{\alpha}{}_{,\beta} - \nu_{\alpha} d_{\beta\theta} g^{\theta\gamma}{}_{,N} N_{\alpha\beta} = \nu_{\alpha,\beta} + \mu^{\gamma}{}_{\alpha} d_{\gamma\beta} \qquad \dots (2.4)$$

Since we know that λ^i is unit vector, therefore we can obtain $\lambda^i \cdot \lambda^i_{,\alpha} = 0$, which gives $p_{\gamma} \mu^{\gamma}_{\alpha} + q v_{\alpha} = 0$. The intrinsic derivative of $\frac{d\lambda^i}{ds}$, represented by $\lambda^{"i}$ along *C* can be obtained as follows:

$$\lambda^{\prime\prime i} = (M^{\gamma}_{\alpha\beta} u^{\prime\alpha} u^{\prime\beta} + \mu^{\gamma}_{\alpha} u^{\prime\prime\alpha}) x^{i}_{,y} + (N_{\alpha\beta} u^{\prime\alpha} u^{\prime\beta} + v_{\alpha} u^{\prime\prime\alpha}) X^{i}$$
(2.5)

where $p_{\gamma} M^{\gamma}_{\alpha\beta} + q N_{\alpha\beta} + \mu^{\alpha}_{\ \beta} \mu^{\delta}_{\ \beta} + v_{\alpha} v_{\beta} = 0$, which is a consequence of $p_{\gamma} \mu^{\gamma}_{\ \alpha} + q v_{\alpha} = 0$. From equation (2.3) we can get

$$\lambda^{i}_{,\alpha\beta\gamma} = (M^{\theta}_{\alpha\beta,\gamma} - N_{\alpha\beta} \, d_{\gamma\delta} \, g^{\delta\theta}) \, x^{i}_{,\theta} + X^{i} \, (M^{\theta}_{\alpha\beta} \, d_{\theta\gamma} + N_{\alpha\beta,\gamma}) \qquad \dots (2.6)$$

Such that

$$q \{ M^{\theta}{}_{\alpha\beta} (q \ d_{\theta\gamma} + \mu_{\theta\gamma} - p_{\theta,\gamma}) + M^{\theta}{}_{\beta\gamma} \ \mu_{\theta\alpha} - M_{\beta\theta}, \gamma \ \mu^{\theta}{}_{\alpha} \} - \mu^{\theta}{}_{\alpha} \ \mu_{\phi}{}^{\beta} \ d_{\theta\gamma} \ p_{\phi} - N_{\alpha\beta} (\mu^{\theta}{}_{\gamma} \ p_{\theta} + q \ p^{\theta} \ d_{\theta\gamma} + q \ q_{,\gamma}) = 0 \qquad \dots (2.7)$$

The intrinsic derivative of $\frac{d^2\lambda^i}{ds^2}$ along C which is represented by λ^{m^i} can be obtained in

the following form

$$\lambda^{\prime\prime\prime} = (\mathbf{x}^{1}_{,\gamma} \mathbf{A}^{\gamma} + \mathbf{B} \mathbf{X}^{\prime}) \qquad \dots (2.8)$$

where
$$A^{\gamma} = [\mu^{\gamma}_{\alpha} u''^{\alpha} + \mu''^{\alpha} u'^{\beta} (2M^{\gamma}_{\alpha\beta} + M^{\gamma}_{\beta\alpha}) + u'^{\alpha} u'^{\beta} u'^{\delta} (M^{\gamma}_{\alpha\beta,\delta} - N_{\alpha\beta} d'_{\delta})] \dots (2.9)$$

and
$$B = [v_{\alpha} u^{\prime\prime\prime\alpha} + u^{\prime\prime\alpha} u^{\prime\beta} (2N_{\alpha\beta} + N_{\beta\alpha}) + u^{\prime\alpha} u^{\prime\beta} u^{\prime\delta} (d_{\gamma\delta} M^{\gamma}{}_{\alpha\beta} + N_{\alpha\beta,\delta})] \qquad \dots (2.10)$$

$\lambda_{o-CURVES}$

Definition 3.1: A curve *C* on the surface *S* hall be called λ_0 -curve in an Euclidean space of three dimensions if the osculating plane at any point *P* of *C* contains the vector λ^{mi} .

The equation of osculating plane at any point P of C can be written as [1]

Acta Ciencia Indica, Vol. XLIII M, No. 1 (2017)

$$\delta_{i j k}^{123}(\mathbf{x}^{i} - \mathbf{x}^{i})(\mathbf{u}^{\prime \sigma} \mathbf{x}^{j}_{,\sigma})(\rho^{\alpha} \mathbf{x}^{k}_{,\alpha} + \mathbf{X}^{k} k_{n}) = 0 \qquad \dots (3.1)$$

where 'xⁱ are current coordinates of a point in Euclidean space of three dimensions and ρ^{α} , the first curvature vector is expressed as [1]

$$\rho^{\alpha} = u^{\mu\alpha} + \{ {}^{\alpha}{}_{\beta\gamma} \} u^{\mu} u^{\gamma} \qquad \dots (3.2)$$

Now if λ^{mi} lies in the plane (3.1), equation $x^i = x^i + t \lambda^{mi}$, must hold for all t. Hence we get

$$\delta_{i\,j\,k}^{123} \left(u^{i\sigma} x^{j}_{,\sigma} \right) \left(\rho^{\alpha} x^{k}_{,\alpha} + X^{k} k_{\alpha} \right) \left(x^{i}_{,\gamma} A^{\gamma} + B X^{i} \right) = 0 \qquad \dots (3.3)$$

Using [1]

$$\delta_{i\,j\,k}^{123} X^{i} x_{,\sigma}^{j} X^{k} = 0, \ \delta_{i\,j\,k}^{123} x_{,\gamma}^{i} x_{,\sigma}^{k} x_{,\alpha}^{k} = 0 \qquad \dots (3.4)$$

In equation (3.3), we obtain on simplification

$$\delta_{i\,j\,k}^{123} X^{i}, x^{j}, \sigma u^{\sigma} x^{k}, \alpha (B \rho^{\alpha} - k_{n} A^{\alpha}) = 0 \qquad \dots (3.5)$$

Summing (3.5) for σ and α and neglecting non-zero terms and using $e_{12} = -e_{21} = 1$ and $e_{11} = e_{22} = 0$, we obtain

$$e_{\sigma \alpha} u^{\prime \sigma} \left(B \rho^{\alpha} - k_n A^{\alpha} \right) = 0 \qquad \qquad \dots (3.6)$$

Hence we have:

Theorem 3.1: The differential equation of λ_0 -curves, in an Euclidean space of three dimensions is given by equation (3.6)

If either *C* be a geodesic or B = 0, the equation (3.6) reduces to

$$e_{\sigma \alpha} u^{\prime \sigma} A^{\alpha} = 0 \qquad \qquad \dots (3.7)$$

which implies that either $k_n = 0$ or

$$p_{\sigma \alpha} u'^{\sigma} A^{\alpha} = 0 \qquad \qquad \dots (3.8)$$

Using equation (3.2) for a geodesic curve, equation (3.8) can be represented by

$$\sigma_{\alpha\gamma} u^{\prime\sigma} u^{\prime\theta} u^{\prime\phi} u^{\prime\delta} \left[2 \left\{ {}^{\alpha}_{\beta\delta} \right\} \left\{ {}^{\beta}_{\theta\phi} \right\} \mu^{\gamma}_{\alpha} - \mu^{\gamma}_{\beta} \left\{ {}^{\beta}_{\theta\phi} \right\}_{,\delta} - \left\{ {}^{\alpha}_{\theta\phi} \right\} \left({}^{\mu}\gamma_{\alpha,\delta} + M^{\gamma}_{\alpha\delta} + M^{\gamma}_{\delta\alpha} - d_{\delta\beta} g^{\beta\gamma} v_{\alpha} \right) + M^{\gamma}_{\theta\phi,\delta} - N_{\theta\phi} d_{\delta\alpha} g^{\alpha\gamma} \right] = 0 \qquad \dots (3.9)$$

If we consider that the λ_0 -curves are either asymptotic lines or satisfy equation (3.8), equation (3.6) leads to $e_{\sigma \alpha} u^{\sigma} B \rho^{\alpha} = 0$, *i.e.*, either it is a geodesic curve or B = 0, *i.e.*, it is a generalized Darboux curve Rastogi and Bajpai [2]. Hence we have:

Theorem 3.2: The necessary and sufficient condition for a λ_0 -curve to be either a geodesic curve *i.e.*, $u'^1 \rho^2 = u'^2 \rho^1$ or be a generalized Darboux curve, is that it is either an asymptotic line or satisfies equation (3.8).

λ_{o-} curvature of a curve on s

~

The equation (3.6) is the single differential equation of λ_0 -curves. The equation of λ_0 -curves can alternatively be expressed as

$$T^{l} = B \rho^{l} + k_{n} e_{\sigma \alpha} u^{\prime \sigma} A^{\alpha} g_{2 \beta} u^{\prime \beta} = 0 \qquad \dots (4.1) (i)$$

$$T^{2} \equiv B \rho^{2} - k_{n} e_{\sigma \alpha} u^{\prime \sigma} A^{\alpha} g_{1 \beta} u^{\prime \beta} = 0 \qquad \dots (4.1) (ii)$$

In analogy with the definition of union curvature [3], we define the vector with contravariant components T^{α} as the λ_0 -curvature vector and the magnitude of this vector shall be called λ_0 -curvature. From equation (3.1), we can observe the following

Theorem 4.1: The λ_0 -curvature vector in an Euclidean space of three dimensions is a null vector at each point of the λ_0 -curve.

Using
$$\varepsilon_{\alpha\beta} = (x^{i}_{,\alpha} x^{i}_{,\beta} X^{j}) = g e_{\alpha\beta}$$
, the λ_0 -curvature of the curve is defined as
 $K_0 = \varepsilon_{\alpha\beta} u^{,\alpha} T^{\beta}$... (4.2)
Since $\varepsilon_{\alpha\beta} u^{,\alpha} u^{,\beta} = 0$, therefore with the help of equation (4.1), we can write (4.2) as

$$\varepsilon_{\alpha\beta} u = 0$$
, inervice with the help of equation (4.1), we can write (4.2) as

$$K_0 = \varepsilon_{\alpha\beta} \, u^{\prime \alpha} \left(B \, \rho^\beta - k_n \, A^\beta \right) \qquad \dots (4.3)$$

From equation (4.3), we can easily obtain.

Theorem 4.2: The ratio of K_0 -curvature of a generalized Darboux curve and normal curvature to the surface is given by $\varepsilon_{\alpha\beta} u^{\alpha} A^{\beta}$.

If $k_g = \varepsilon_{\alpha\beta} u^{\alpha} \rho^{\beta}$, be the geodesic curvature, from equation (4.3), we can observe that the geodesic curvature along a λ_0 -curve ($K_0 = 0$), is given by

$$B k_g = k_n \varepsilon_{\alpha\beta} u^{\alpha} A^{\beta} \qquad \dots (4.4)$$

which is analogy to the geometrical interpretation of union curvature, Springer [3], gives

Theorem 4.3: The K_0 -curvature of a curve C at any point P on a surface of reference S of a rectilinear congruence is the curvature of C obtain by projecting C onto the tangent plane to S at P, in the direction of λ^{mi} .

CURVATURE OF A λ_0 -CURVE

Let α^i , β^i and γ^i be respectively the direction cosines of unit tangent, principal normal and binormal to a λ_0 -curve *C*, then we can express β^i as

$$\beta^{i} = a \alpha^{i} + b \lambda^{mi} \qquad \dots (5.1)$$

Let ψ be the angle between the vectors α^i and $\lambda^{i''}$, then for $D |\lambda^{i''}| = 1$,

$$= -\cot \psi, b = D \operatorname{cosec} \psi \qquad \dots (5.2)$$

From equations (5.1) and (5.2), we get

$$\beta^{i} = \operatorname{cosec} \psi \left(D \lambda^{mi} - \alpha^{i} \cos \psi \right) \qquad \dots (5.3)$$

Since we know that $x^{n'} = k \beta^i$, therefore substituting from equation (1.3), we can write

$$\rho^{\alpha} x^{i}_{,\alpha} + X^{i} k_{n} = k \operatorname{cosec} \psi \left[D \left(x^{i}_{,\alpha} A^{\alpha} + B X^{i} \right) - x^{i}_{,\alpha} u^{\prime \alpha} \cos \psi \right] \qquad \dots (5.4)$$

Multiplying equation (5.4) by X^i , $g^{\delta\beta} x^i_{,\delta} \varepsilon_{\tau\beta} u^{\prime\tau}$ and $\lambda^{\prime\prime\prime i}$ respectively and solving, we get the following expressions for the curvature k of a λ_0 -curve

$$k = (BD)^{-1} k_n \sin \psi \qquad \dots (5.5)$$

$$k = (D \varepsilon_{\tau\beta} u^{\tau} A^{\beta})^{-1} k_g \sin \psi \qquad \dots (5.6)$$

$$k = \sin \psi \left(\rho^{\alpha} A^{\alpha} + B k_{n} \right) \left[A^{\alpha} \left(DA^{\alpha} - u^{\alpha} \cos \psi \right) + DB^{2} \right]^{-1}$$
(5.7)

Multiplying equation (5.1) by β_i , we can obtain on simplification

$$k = b \left(\rho^{\alpha} A^{\alpha} + B k_n \right) \qquad \dots (5.8)$$

and

Substituting the value of b from equation (5.2), we get

$$k = D \operatorname{cosec} \psi \left(\rho^{\alpha} A^{\alpha} + B k_n \right) \qquad \dots (5.9)$$

Since D and cosec ψ can not vanish, therefore from equation (5.9), we can obtain

Theorem 5.1: The necessary and sufficient condition for the curvature k of a λ_0 -curve to vanish is given by the vanishing of $p^{\alpha} A_{\alpha} + B k_n$

Since we know that $-(k\alpha^i + \tau\gamma^i) = k^{-1} x^{\prime\prime\prime}$, therefore using equation (1.5), we can obtain $\gamma^I = -(k\tau)^{-1} u^{\beta} \{A^{\alpha}(\rho^{\alpha}_{\ \beta} - k_n d^{\alpha}_{\ \beta}) x^i_{\ \alpha}$

+
$$B\left(K_{n,\beta}+\rho^{\alpha}d_{\alpha\beta}X^{i}\right)-k\tau^{-1}x^{i}_{,\alpha}u^{,\alpha}$$
 ... (5.10)

Which leads to

$$K^{2} = -\left[u^{\beta} \left\{A_{\alpha}(\rho^{\alpha}{}_{,\beta} - k_{n}d^{\alpha}{}_{\beta}) + B\left(k_{n,\beta} + \rho^{\alpha}d_{\alpha\beta}\right)\right\} / (A_{\alpha}u^{\alpha}) \qquad \dots (5.11)$$

Applying Theorem 5.1, to equation (5.11), we obtain on simplification

$$\{\rho^{\alpha}(A_{\alpha,\beta} - B d_{\alpha\beta}) + k_n (B_{,\beta} + A_{\alpha} d^{\alpha}{}_{\beta})\} u^{,\beta} = 0 \qquad \dots (5.12)$$

Hence we have:

Theorem 5.2: The necessary and sufficient condition for the curvature k of a λ_0 -curve to vanish is given by (5.12).

Torsion of a λ_0 -curve

Differentiating the identity $\gamma^i = \alpha^i x \beta^I$, with respect to s and using equation (5.3) and the Frenet formula $d\gamma^i/ds = \tau \beta^I$ Eisenhart [1], we get

$$\tau (D\lambda^{'''} - \cos \psi \, dx^i/ds) = \{ (dx^i/ds) x \lambda^{'''i} \} \{ D' - D \cot \psi \, (d \, \psi/ds) \} + D \{ d^2 x^i/ds^2 x \lambda^{'''i} + (dx^i/ds) x \lambda^{(4)i} \} \dots (6.1)$$

Substituting the values of λ^{inl} and $d^2 x^i/ds^2$ in equation (6.1) and multiplying the resulting equation X^i , we obtain on simplification the torsion of a λ_0 -curve as follows:

$$\tau (BD)^{-1} \varepsilon_{\alpha\beta} \left[\left\{ D' - D \cot \psi \left(d \psi / ds \right) \right\} A^{\beta} u^{\prime \alpha} + D \left\{ A^{\beta} \rho^{\alpha} + \left(A^{\alpha}, \theta - B d^{\alpha} \theta \right) u^{\prime \theta} u^{\prime \beta} \right\} \right] \dots (6.2)$$

With the help of equation (5.6) and (6.2), we can obtain a relationship between the curvature k and the torsion τ .

Some special cases

Cash I: Normal Congruence. Let us consider that the congruence be normal, then in that case we have $p_{\alpha} = 0$, q = 1, $\lambda^{i} = X^{i}$, $\mu^{\gamma}{}_{\alpha}$, $= -d^{\gamma}{}_{\alpha} v_{\alpha} = 0$, $M^{\prime}{}_{\alpha\beta} = -d^{\gamma}{}_{\alpha\beta}$, $N_{\alpha\beta} = -d^{\gamma}{}_{\alpha} d_{\gamma\beta}$ and equation (2.6) can be expressed as

$$e_{\sigma\alpha}u^{,\sigma}[k_{n}u^{,\gamma}d^{\alpha}{}_{\gamma}-u^{,\gamma}u^{,\beta}\{\rho^{\alpha}(2d^{\gamma}{}_{\delta}d_{\gamma\beta}+d^{\gamma}{}_{\beta}d^{\gamma}{}_{\delta}) - k_{n}(2d^{\alpha}{}_{\delta,\beta}+d^{\alpha}{}_{\beta,\delta})\} - u^{,\theta}u^{,\beta}u^{,\delta}\{\rho^{\alpha}(d_{\gamma\delta}d^{\gamma}{}_{\theta,\beta}+d^{\gamma}{}_{\theta}d_{\gamma\beta,\delta}+d^{\gamma}{}_{\theta,\delta}d_{\gamma\beta}) - k_{n}(d^{\alpha}{}_{\theta,\beta,\delta}-d^{\alpha}{}_{\delta}d^{\gamma}{}_{\theta}d_{\gamma\beta})\}] \qquad \dots (6.3)$$

Hence we have

Theorem 7.1: For a normal congruence in an Euclidean space of three dimensions; λ_0 -curves satisfy equation (7.1).

Case II : Congruence formed by tangents to a one parameter family of curves. In such a case, we have q = 0, ρ^{α} is a unit vector, $\lambda^{i} = x^{i}$, ${}_{\alpha} \rho^{\alpha}$, $u^{\gamma}{}_{\alpha} = \rho^{\gamma}{}_{\alpha}$, $v_{\alpha} = \rho^{\beta} d_{\alpha\beta}$ and hence equation (3.6) can be expressed as

$$e_{\sigma\alpha} u^{\prime\sigma} \left[u^{\prime\prime\prime\prime} \left(d_{\gamma\beta} \rho^{\alpha} p^{\beta} - k_{n} \rho^{\alpha}{}_{,\gamma} \right) + u^{n\delta} u^{\prime\beta} \left\{ \rho^{\alpha} \left(2\rho^{\gamma}{}_{,\delta} d_{\gamma\beta} + 2(\rho^{\theta} d_{\delta\theta}), \beta \right) \right. \\ \left. + \rho^{\gamma}{}_{,\beta} d_{\gamma\delta} + \left(\rho^{\theta} \cdot d_{\beta\theta} \right), \delta \right) - k_{n} \left(2\rho^{\alpha}{}_{,\delta,\beta} - 2\rho^{\theta} d_{\delta\theta} d^{\alpha}{}_{\beta} + \rho^{\alpha}{}_{,\beta,\delta} \right) \\ \left. \rho^{\theta} d_{\beta\theta} d^{\alpha}{}_{\delta} \right\} + u^{\prime\phi} u^{\prime\beta} u^{\prime\delta} \left\{ \left\{ \rho^{\alpha} d_{\gamma\delta} \left(\rho^{\gamma}{}_{,\phi,\beta} - \rho^{\theta} d_{\phi\theta} d^{\prime}{}_{\beta} \right) + \rho^{\alpha} (\rho^{\gamma}{}_{,\phi,\delta} d_{\gamma\beta} \right. \\ \left. + \rho^{\gamma}{}_{,\phi} d_{\gamma\beta,\delta} + \left(\rho^{\theta} d_{\phi\theta} \right)_{,\beta,\delta} \right\} \right\} - k_{n} \left\{ \rho^{\alpha}{}_{,\phi,\beta,\delta} - \rho^{\theta}{}_{,\delta} d_{\phi\theta} d^{\alpha}{}_{\beta} - \rho^{\theta} d_{\phi\theta,\delta} d_{\phi\theta,\delta} d^{\alpha}{}_{\beta,\delta} - d^{\alpha}{}_{\delta} \left(\rho\theta, \phi d\phi\beta + \left(\rho^{\theta} d_{\phi\theta} \right)_{,\beta} \right) \right\} \right\} = 0 \qquad \dots (6.4)$$

Hence we have:

Theorem 7.2: In an Euclidean space of three dimensions, for a congruence formed by tangents to a one parameter family of curves, λ_0 -curves satisfy equation (7.2).

Reference

- 1. Eisenhart, L.P., An introduction to differential geometry with use to tensor calculus, *Princeton*, (1947).
- Rastogi, S.C. and Bajpai, P., Generalized and super Darboux curves in an Euclidean space of three dimensions, *Journal of Science, Technology and Management*, 1, 81–90 (2007).
- 3. Springer, C.E., Union curves and union curvature, Bull. Amer. Math. Soc., 51, 686-691 (1945).
- 4. Springer, C.E., Union torsion of a curve on a surface, Amer. Math. Monthly, 54, 259 262 (1947).