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In the presence of humic acid, IO3
–
 photo-chemically 

transforms to aqueous I
- 
and soluble iodinated humic acid 

and the fixing of iodine within humic structures is likely to 
occur at aromatic 1, 2 diol groups. Spectroscopic analysis 
identified ~ 20% of reduced iodate in the form of ‘free’ I

- 

with lifetime ~ 2 days for IO3
-
 in marine aerosol. The 

remaining [I
-
] concentration (average of ~ 80%) is assumed 

to have been taken up by humic acid and form the soluble 
iodinated humic acid. This lifetime of IO3

-
 in marine aerosol 

is consistent with the THAMOD model predictions.  
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INTRODUCTION 

Iodine exists in open seawaters mainly in the inorganic forms iodate (IO3
–) and iodide  

(I–)  (Wong and Zhang 2008). While the concentration of IO3
– predominates in deep water, I– 

concentrations increase toward the surface. The primary precursor for iodine oxide particle 
(IOP) formation in the coastal marine boundary layer (MBL) is iodine (I2) (Saiz-Lopez, Plane 
et al. 2006) originating from exposed  macroalgae. In contrast, recent field measurements of 
IO above the open ocean suggest that biogenic organic-iodine emissions cannot account for 
the observed levels (Read, Mahajan et al. 2008; Mahajan, Oetjen et al. 2009; Mahajan, Plane 
et al. 2010). Therefore, it is assumed that IO3

– is reduced to I– in seawater which is converted 
to, and emitted as I2 to the atmosphere which may contribute to observed levels of I2 in the 
MBL. Previous studies have shown that dissolved organic matter (DOM) plays an important 
role in photo-reduction of IO3

– to I– (Tsunogai and Sase 1969; Spokes and Liss 1996). 
Dissolved organic forms have been studied in detail with both volatile (i.e. organo-iodides 
such as CH3I or CH2I2), and non-volatile fractions being identified (Klick and Abrahamsson 
1992; Cook, Carpenter et al. 2000; Huang, Ito et al. 2005). Although the volatile forms 
(organo iodides and I2) are present at very low levels (< 10–3 µM) (Wong and Cheng 2001) 
and can pass into the atmosphere via transfer across the water surface, and then participate in a 
number of processes including secondary aerosol formation (O'Dowd, Jimenez et al. 2002; 
Saunders and Plane 2005; O'Dowd and De Leeuw 2006; O'Dowd and De Leeuw 2007), the 
non-volatile species are not so well characterized.  

Recent measurements have shown that a significant fraction of organic iodine present in 
the marine aerosol is in the form of dissolved organic iodine (DOI) (Aguer, et al. 1999 Baker 
2005; Gilfedder, Lai et al. 2008), most likely originating from the sea surface micro-layer 
(Clark 2000). This has led to the suggestion of a possible reaction between DOI and the 
aqueous species hypoiodous acid (HOI), which would recycle I- within aerosol and also 
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enhance the release of I2 into the gas phase (Pechtl, Schmitz et al. 2007) , but the exact 
identification of such material remains largely unknown. Humic acids are likely to be an 
important class of compound, for which iodine has been shown to readily be taken up and 
fixed into a non volatile form (Francois 1987; Keppler, Biester et al. 2003; Reiller, Mercier-
Bion et al. 2006). Humic acids are found in both terrestrial and marine environments and 
represent a group of multi-functional organic compounds including carboxyl and hydroxyl 
groups, for which no single molecular structure or weight exists. They are soluble in water and 
are chromophores which participate in photo-sensitised chemical reactions in natural waters 
(Zafiriou, Joussotdubien et al. 1984; Clark 2000; Clark, Debruyn et al. 2008; Clark, De Bruyn 
et al. 2009). Whilst a number of techniques have been used to attempt to identify the 
mechanism by which iodine is taken into such compounds (Wong and Cheng 1998; Warner, 
Casey et al. 2000), to date no solid picture has emerged to fully characterise the chemical 
pathways leading to the formation of iodinated humic substances and emission of I2 to the 
atmosphere.  

Recently, it has also been reported that oxidation of iodide (I–) at the sea surface resulting 
from uptake of ozone (O3) could enhance the emission of I2 into the MBL (Martino, Mills et 
al. 2009; Sakamoto, Yabushita et al. 2009; Hayase, Yabushita et al. 2010). Also, the 
ubiquitous presence of the H2O2 in the lower troposphere can lead to uptake at the seawater 
surface and into aerosol, with the potential for oxidation of I- through to molecular iodine (I2) 
(Kupper, Schweigert et al. 1998; Pradhan, Kyriakou et al. 2010). Emission of I2 to the 
atmosphere by the uptake of O3 and H2O2 would be a potentially important source of precursor 
for the production of secondary aerosol in the form of iodine oxide nanoparticles, as observed 
in numerous field and laboratory studies (McFiggans, Coe et al. 2004; O'Dowd and Hoffmann 
2005; Saunders and Plane 2005). The recycling of iodine back to the gas phase would also 
increase the overall O3-depletiing potential of iodine. 

In this paper a series of laboratory studies to elucidate the mechanism for the reduction of 
aqueous IO3

– to I– in the presence of humic acid and sunlight, and the subsequent emission of 
I2. A series of UV-visible spectroscopic and IOP formation and detection experiments were 
conducted to investigate three potentially important processes likely to participate in the 
emission of I2 to the atmosphere from seawater or sea salt aerosol: (i) the role of dissolved 
organic materials (i.e. humic acid) in the reduction of IO3

– to I– in the form of ‘free’ aqueous 
ions and also fixed iodinated humic form, (ii) the effect of salinity (Cl–) and H2O2 on the 
reduction process, and (iii) the role of surrogate compounds of humic acid (i.e. catechol) in the 
reduction of IO3

– to I–.  

In order to see what happens to the produced I– by the reduction of IO3
– in the aerosol, 

preliminary experiments of the uptake of O3 on an aqueous I– were also conducted. 

EXPERIMENTAL 

Experiments were carried out in two steps. First, a UV-visible spectroscopic study of the 

reduction of IO3
– to I– in the presence of light and humic acid. A fresh 10–4 M NaIO3 (Sigma-

Aldrich,  99.5%) aqueous solution was prepared, to which a humic acid solution was added. 
The humic acid solution was prepared using an untreated commercially available compound 
(Sigma-Aldrich – 53680) by stirring a small amount of the solid in ultra-pure water (18MΩ) 
for typically 2-3 hours, and then filtering off any undissolved matter. The solution was then 
placed into a cylindrical glass cell (volume of 132 cm3), mounted with quartz windows for 
subsequent photolysis using a 1000W Xenon arc lamp (ozone-free Oriel ‘Solar Simulator’). 
The lamp beam was filtered using (a) a water filter to remove IR wavelengths and thus prevent 
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heating of the solution, (b) a solar mass filter to ‘shape’ t
spectrum at the base of the atmosphere,
output of the lamp at λ < 310 nm. The solution was continually exposed t
beam for a 20 hour period at room te
solution cell for subsequent spectroscopic analysis
hours using a Perkin-Elmer spectrometer (Lambda 900) at 0.5 nm intervals between 200 nm 
and 600 nm using 1 cm quartz cuvettes
and using the solar simulator. A complete schematic experimental set

Fig. 1. Schematic of experimental set

This experimental set-up
irradiated 1.0 × 10–4 M IO3

occurs. Separate experiments
the aqueous concentration which would be in equilibrium with
phase mixing ratio of 0.8 parts per billion)
and 0.5 M NaCl (an equivalent concentration to that in seawater) 
added to the IO3

- / humic acid solution prior to irradiation
emission of I2. 

RESULTS AND DISCUSSIO

UV-visible study of the reduction of IO

humic acid were irradiated separately to identify any change in the individual spectra. Figur
2 & 3 show the time-resolved spectra of IO
irradiation for a 10 hour period. 

Fig. 2. UV-visible spectra of an irradiated 1.0E

I C, No. 3 (2017) 

) a solar mass filter to ‘shape’ the lamp spectrum to mimic the solar 
at the base of the atmosphere, and (c) a cut-off filter to remove any of the small 

< 310 nm. The solution was continually exposed to the filtered lamp 
0 hour period at room temperature (293 ± 1 K). An aliquot was extracted from the 
for subsequent spectroscopic analysis and UV-visible spectra were taken

Elmer spectrometer (Lambda 900) at 0.5 nm intervals between 200 nm 
and 600 nm using 1 cm quartz cuvettes. These experiments were performed both in the dark 
and using the solar simulator. A complete schematic experimental set-up is shown in Figure 1. 

 
Schematic of experimental set-up used to study the reduction of IO3

– to I–
 

up was first used to detect any IOP formation resulting from an 

3
–/humic acid solution to establish whether oxidation of I

occurs. Separate experiments were also carried out in which 6.6 × 10–5 M H2O2 (equivalent to
the aqueous concentration which would be in equilibrium with a realistic atmospheric gas 
phase mixing ratio of 0.8 parts per billion) (Jackson and Hewitt 1999; Wong and Zhang 2008)

M NaCl (an equivalent concentration to that in seawater) (Lide 2009) solutions were
/ humic acid solution prior to irradiation to see the effect of these species on 

ESULTS AND DISCUSSIONS 

visible study of the reduction of IO3
– to I– Initially, the solutions of IO

humic acid were irradiated separately to identify any change in the individual spectra. Figur
resolved spectra of IO3

– and humic acid solutions respectively on 
irradiation for a 10 hour period.  

 
visible spectra of an irradiated 1.0E-04M NaIO3 solution 
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off filter to remove any of the small 

o the filtered lamp 
An aliquot was extracted from the 

were taken every 2 
Elmer spectrometer (Lambda 900) at 0.5 nm intervals between 200 nm 

These experiments were performed both in the dark 
Figure 1.  

used to detect any IOP formation resulting from an 
ation of I– to I2 

(equivalent to 
a realistic atmospheric gas 

n and Hewitt 1999; Wong and Zhang 2008) 
solutions were 

to see the effect of these species on 

Initially, the solutions of IO3
– and 
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and humic acid solutions respectively on 
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Fig. 3. UV

These figures clearly show that there is no significant change upon irradiation of the two 
individual solutions. 

A mixed solution of 1.0
taken at every 2 hours. Figure 4.4 
nm, and at 200 – 300 nm (inset), with the thick 
photolysis) solution mixture
hours) spectrum that was acquired. 

Fig. 4. Time-resolved UV-visible absorption spectra taken of an irradiated IO

Figure 4 shows a steadily increasing absorption between ~ 210 nm and 240 nm, con
with the formation of I-, which absorbs strongly in this region, peaking at ~ 225 nm (molar 
extinction coefficient ε ~ 1.4 × 10
cm–1 (Awtrey and Connick 1951)
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UV-visible spectra of an irradiated humic acid solution 

These figures clearly show that there is no significant change upon irradiation of the two 

A mixed solution of 1.0 × 10–4 M IO3
– + humic acid was then irradiated and spectra wer

taken at every 2 hours. Figure 4.4 shows time-resolved solution spectra between 200 and 
00 nm (inset), with the thick sky blue line indicating the initial (i.e

ture (t = 0 hour) spectrum and the thick red line, the final (
acquired.  

 
visible absorption spectra taken of an irradiated IO3

– + humic acid mixed solution.

shows a steadily increasing absorption between ~ 210 nm and 240 nm, con
, which absorbs strongly in this region, peaking at ~ 225 nm (molar 

~ 1.4 × 104 M–1 cm–1, compared with ε at 225 nm for IO3
– of ~ 10

(Awtrey and Connick 1951). Absorption in the visible region is exclusively due to humic 

, No. 3 (2017) 

These figures clearly show that there is no significant change upon irradiation of the two 

+ humic acid was then irradiated and spectra were 
resolved solution spectra between 200 and 600 

i.e. before 
red line, the final (t = 20 

 
humic acid mixed solution. 

shows a steadily increasing absorption between ~ 210 nm and 240 nm, consistent 
, which absorbs strongly in this region, peaking at ~ 225 nm (molar 

of ~ 103 M–1 
. Absorption in the visible region is exclusively due to humic 
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acid (Frimmel 1994; Aguer, Richard 
absorption at all wavelengths in this region with time.

In order to determine the change in concentration of reactants and products with time, a 
least squares optimised spectral fitting analysis was performed using reference
of the initial iodate and humic acid solutions, and of a prepared 
Firstly, the humic acid reference spectrum was fitted to the visible part of the photolysed 
solution spectra and then iodate and iodide reference spe

For humic acid, it was not possible to quantify the concentration throughout the 
photolysis experiments as neither the molecular weight nor molar extinction coefficients are 
known for the substance. Therefore 
species as a function of photolysis time for the data fitted for the same experiments as 
described above i.e. initial [IO

Figure 5 (b) shows the variation in the fraction of detectable I
period i.e. the ratio of [I–]t/([IO

Fig. 5. (a) – Variation of measured absorbance of IO
obtained by spectral fitting of the individual components. The solid black lines indicate linear fits of the I
points, whilst the dashed black line indicates the increase resulting from a combination of the 2 hour pho

period and the overnight, dark reaction in the stored solution. (b) 
result of photo-sensitised iodate reduction (dashed line indicates the average value of ~ 0.19.

It is clear from figure 5 that b
seen to steadily decrease with time with a final [IO
[I–] concentration in solution increases to 1.3 × 10
concentration with time throughout the experimental time
shown in Figure 4.6, with an

I C, No. 3 (2017) 

(Frimmel 1994; Aguer, Richard et al. 1999), and shows a continually decreasing 
absorption at all wavelengths in this region with time. 

In order to determine the change in concentration of reactants and products with time, a 
least squares optimised spectral fitting analysis was performed using reference spectra taken 
of the initial iodate and humic acid solutions, and of a prepared 1.0 × 10–4 M KI solution. 
Firstly, the humic acid reference spectrum was fitted to the visible part of the photolysed 
solution spectra and then iodate and iodide reference spectra were fitted at 225 nm.  

For humic acid, it was not possible to quantify the concentration throughout the 
photolysis experiments as neither the molecular weight nor molar extinction coefficients are 
known for the substance. Therefore figure 5 (a) is a plot of absorbance at 225 nm for the three 
species as a function of photolysis time for the data fitted for the same experiments as 
described above i.e. initial [IO3

-] = 1.0 × 10–4 M.  

the variation in the fraction of detectable I- in solution at each time 
/([IO3

–]t -[IO3
–]0). 

 
Variation of measured absorbance of IO3

–, humic acid [HA], and I–   with photolysis time at 225 nm, 
obtained by spectral fitting of the individual components. The solid black lines indicate linear fits of the I
points, whilst the dashed black line indicates the increase resulting from a combination of the 2 hour pho

period and the overnight, dark reaction in the stored solution. (b) – Calculated fraction of I- in solution as a 
sensitised iodate reduction (dashed line indicates the average value of ~ 0.19.

It is clear from figure 5 that both humic acid and iodate absorbances (concentrations) are 
seen to steadily decrease with time with a final [IO3

–] after 18 hours of 5.3 × 10–5 M, whilst the 
concentration in solution increases to 1.3 × 10–5 M after 18 hours. The decrease in iodate 

concentration with time throughout the experimental time-scale described in Figure 4.5 (a)
n iodate loss rate (slope) of 1.2 × 10–5 s–1.  
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shows a continually decreasing 

In order to determine the change in concentration of reactants and products with time, a 
spectra taken 

M KI solution. 
Firstly, the humic acid reference spectrum was fitted to the visible part of the photolysed 

For humic acid, it was not possible to quantify the concentration throughout the 
photolysis experiments as neither the molecular weight nor molar extinction coefficients are 

plot of absorbance at 225 nm for the three 
species as a function of photolysis time for the data fitted for the same experiments as 

lution at each time 

with photolysis time at 225 nm, 
obtained by spectral fitting of the individual components. The solid black lines indicate linear fits of the I– data 
points, whilst the dashed black line indicates the increase resulting from a combination of the 2 hour photolysis 

in solution as a 
sensitised iodate reduction (dashed line indicates the average value of ~ 0.19. 

ic acid and iodate absorbances (concentrations) are 
M, whilst the 

The decrease in iodate 
in Figure 4.5 (a) is 
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Fig. 6. A linear fit of the decrease in iodate concentration wi

The loss rate shown in the Figure 6 corresponds to a lifetime of ~ 2 days for iodate in 
aerosol. The concentration of [I
undergone conversion from the initial iodate form. This fraction is 
with time, with an average of 0.19 as indicted by the dashed line in the bottom panel. The 
remaining [I-] concentration (average of ~ 80%) is assumed to 
acid and form the soluble iodinated humic acid
there are no definitive absorption features evident in the mixed solution spectra to verify this.
The conversion fraction of iodate into [I
modelling work performed using THAMOD for predictions for Cape Verde.  Figure 7 show
the modelling predictions of the conversion of iodate into [I

Fig. 7. Variation of enrichment factor with time. The enrichment factor represents the total aerosol iodine 

From the figure 7 it clear that a typically enrichment factor ~ 5000
with a lifetime of 40 hours (~ 2 days) and the organic fraction increases to 40% after 4 days.

This lifetime accounts for the enrichment of iodate in marine aerosol, and explains why 
aged aerosol has less iodate relative to organic iodine.
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A linear fit of the decrease in iodate concentration with time. 

The loss rate shown in the Figure 6 corresponds to a lifetime of ~ 2 days for iodate in 
aerosol. The concentration of [I–] after 18 hours represents ~ 20% of the iodine which has 
undergone conversion from the initial iodate form. This fraction is seen to be fairly constant 
with time, with an average of 0.19 as indicted by the dashed line in the bottom panel. The 

concentration (average of ~ 80%) is assumed to have been taken up by humic 
the soluble iodinated humic acid (Reiller, Mercier-Bion et al. 2006). However,

itive absorption features evident in the mixed solution spectra to verify this.
The conversion fraction of iodate into [I–] and iodinated humic acid is consistent with the 
modelling work performed using THAMOD for predictions for Cape Verde.  Figure 7 show
the modelling predictions of the conversion of iodate into [I–] and organic fraction. 

 
Variation of enrichment factor with time. The enrichment factor represents the total aerosol iodine 

concentration to seawater (450 nM). 

clear that a typically enrichment factor ~ 5000-10000 is consistent 
with a lifetime of 40 hours (~ 2 days) and the organic fraction increases to 40% after 4 days.

This lifetime accounts for the enrichment of iodate in marine aerosol, and explains why 
aerosol has less iodate relative to organic iodine. 
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The loss rate shown in the Figure 6 corresponds to a lifetime of ~ 2 days for iodate in 
% of the iodine which has 

seen to be fairly constant 
with time, with an average of 0.19 as indicted by the dashed line in the bottom panel. The 

en taken up by humic 
. However, 

itive absorption features evident in the mixed solution spectra to verify this. 
] and iodinated humic acid is consistent with the 

modelling work performed using THAMOD for predictions for Cape Verde.  Figure 7 shows 

Variation of enrichment factor with time. The enrichment factor represents the total aerosol iodine 

10000 is consistent 
with a lifetime of 40 hours (~ 2 days) and the organic fraction increases to 40% after 4 days. 

This lifetime accounts for the enrichment of iodate in marine aerosol, and explains why 
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CONCLUSIONS  

From these laboratory experiments, the following insights can be drawn regarding the 

transformation of iodine species in seawater and within atmospheric aerosol. Firstly, IO3
– 

(oxidation state = +5) is reduced into I– (oxidation state = –1) on photolysis with visible light 
(λ > 310 nm) in the presence of aqueous humic acid solution. The action of visible light on 
humic acid produces solvated electrons (e–

aq) and H2O2. Solvated electrons (e–
aq) reduce IO3

– 
to I–, which is then oxidised to I2 by H2O2.  

Secondly, the spectral fitting analysis has shown that only ~ 20% of the reduced IO3
- is in 

the I– form and the difference, ~ 80% of reduced IO3
–, forms iodinated humic acid, not 

amenable to direct spectroscopic detection. This indicates that the dissolved organic iodine 
will be the major reservoir of reduced iodine in seawater.  
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