NON-INVARIANT HYPERSURFACE OF HGF-STRUCTURE METRIC MANIFOLD

MAYANK MITTAL AND N. K. JOSHI

P.N.G. Govt. P.G. College, Ramnagar

RECEIVED: 19 February, 2018

Hypersurface of a manifold is a Submanifold of dimension one less then ambient manifold. The HGF Structure Metric manifold is defined and studied by Pandey² and others. In the present paper we define and study Non-Invariant Hypersurface of HGF structure metric manifold and give some fruitfull results.

Introduction

Let us consider M be a differentiable manifold of differentiability class C^{∞} . Let there exist a Vector valued linear function J of class C^{∞} satisfying the algebraic structure

$$J^2 = -a^2 I_n \qquad \dots (1.1)$$

where 'a' is a complex number. Then (M, J) is said to be a hyperbolic differentiable structure briefly known as HGF – structure defined by (1.1) and the manifold M is called HGF – manifold.

For different values of 'a' the equation (1.1) gives different algebraic structures such as:

- (i) If $a \neq 0$ it is a hyperbolic π -Structure.
- (ii) If $a = \pm 1$ it is an almost complex or an almost hyperbolic product structure.
- (iii) If $a = \pm i$ it is an almost product or an almost hyperbolic complex structure.
- (iv) If a = o it is an almost tangent or a hyperbolic almost tangent structure.

Let the HGF structure be endowed with a hermite tensor g such that

$$g(\bar{X}, \bar{Y}) = a^2 g(X, Y)$$

or

$$g(JX, JY) = a^2 g(X, Y) \qquad \dots (1.2)$$

Then $\{J, g\}$ is said to give to M a hyperbolic differentiable metric structure and the manifold M is called a hyperbolic differentiable metric structure manifold.

In a hyperbolic metric structure if

$$(D_X J)Y = 0 \dots (1.3)$$

is satisfied, then M is said to be a hyperbolic kahler manifold.

and if
$$(D_X J)Y + (D_Y J)X = 0$$
 ... (1.4)

is satisfied then M is said to be hyperbolic nearly kahler manifold.

02/M018

A Hypersurface of HGF metric manifold M is called a Non-Invariant hypersurface, if the transform of a tangent vector of the hypersurface under the action of (1, 1) tensor field defining the HGF structure is never tangent to the hypersurface.

Consider HGF manifold M and let \tilde{M} be the hypersurface of M and let B be the differential of the immersion i of \tilde{M} into M. Let X, Y, Z be tangent to \tilde{M} and N a unit normal vector then we have,

$$JBX = BFX + u(X)N \qquad \dots (1.5)$$

where F is (1, 1) tensor field and u is a 1- form on \tilde{M} . If $u \neq 0$ then \tilde{M} is called non-invariant hypersurface of M. If u is identically zero, then \tilde{M} is said to be an invariant hypersurface that is, the tangent space of \tilde{M} is invariant by J.

The metric g of an HGF metric manifold induces a Riemannian metric G on the hypersurface \tilde{M} and is given by

$$G(X, Y) = g(BX, BY) \qquad \dots (1.6)$$

The Gauss and Weingarten formulae are given by

$$D_{BX}BY = B \quad \overline{D}_XY + h \quad X, Y \quad N \qquad \dots (1.7)$$

$$D_{BX}N = -BHX \qquad \dots (1.8)$$

For all $X,Y\in T\tilde{M}$, where D and \bar{D} are the Riemannian and induced Riemannian connections on M and \tilde{M} respectively. Here h is symmetric tensor of type (0,2) called the second fundamental form of the hypersurface \tilde{M} and H is a (1,1) tensor field on \tilde{M} such that

$$h(X, Y) = g(HX, Y) \qquad \dots (1.9)$$

Let
$$JN = -BU \qquad \dots (1.10)$$

where U is a vector field in \tilde{M} .

Non-invariant hypersurface of hgf-structure metric manifold

Theorem 2.1. If \tilde{M} is a non-invariant hypersurface of HGF Structure Metric Manifold then we get following relation *i.e.* we get (F, u, U, a^2) structure

$$F^2 = -a^2 I + (u \otimes U) \qquad \dots (2.1)$$

$$uoF = 0 ... (2.2)$$

$$u(U) = -a^2 \qquad \dots (2.3)$$

$$F(U) = 0 \dots (2.4)$$

Proof: Operating equation (1.5) by J

$$J^2BX = J(BFX) + u(X)JN$$

Now using equation (1.1) and (1.5) in above equation

$$-a^{2}BX = BF^{2}X + u(FX)N + u(X)JN$$

Using equation (1.10) in above equation and then equating tangential and normal parts, we get

$$-a^2BX = BF^2X - u(X)BU$$

and

$$u(FX)N=0$$

or

$$F^2 = -a^2 I + (u \otimes U)$$

and

$$uoF = 0$$

Operating equation (1.10) by J and using (1.1), we get

$$-a^2N = -BFU + u(U)N$$

Equating tangential and normal part, we get

$$FU = 0$$
 and $u(U) = -a^2$

Theorem 2.2. The metric g of HGF metric manifold induces a Riemannian metric G on the hypersurface \tilde{M} and is given by G(X,Y) = g(BX,BY). Therefore in case of HGF metric manifold

$$G(FX, FY) = a^2 G(X, Y) - u(X) u(Y)$$
 ... (2.5)

Proof: From equation (1.2) we have,

$$g(JBX, JBY) = a^2 g(BX, BY)$$

Using equation (1.5) in above equation

$$g(BFX + u(X)N, BFY + u(Y)N) = a^2g(BX, BY)$$

$$g(BFX, BFY) + u(Y)g(BFX, N) + u(X)g(N, BFY) + u(X)u(Y)g(N, N) = a^2g(BX, BY)$$

 $g(BFX, BFY) + u(X)u(Y) = a^2g(BX, BY)$

$$G(FX, FY) + u(X) u(Y) = a^2 G(X, Y)$$

$$G(FX, FY) = a^2 G(X, Y) - u(X) u(Y)$$

This completes the proof.

Theorem 2.3. In a Kahler HGF metric manifold, that is, HGF metric structure in which tensor J is parallel *i.e.* $(D_X J)$ Y = 0, we have,

$$(\bar{D}_X F) Y = u(Y) HX - h(X, Y) U \qquad \dots (2.6)$$

$$(\overline{D}_X u)Y = -h(X, FY) \qquad \dots (2.7)$$

Proof: We have $(D_X J) Y = 0$

Therefore $(D_{RY}J) BY = 0$

$$D_{BX}J(BY) - J(D_{BX}BY) = 0$$

Using equation (1.5), we get

$$D_{RX}(BFY+u(Y)N) - J(D_{RX}BY) = 0$$

$$D_{BX}BFY + D_{BX}u(Y)N - J(D_{BX}BY) = 0$$

$$D_{RX}BFY + (D_{RX}u(Y))N + u(Y)D_{RX}N - J(D_{RX}BY) = 0$$

Using equation (1.7) and equation (1.8) in the above equation , we get

$$B(\bar{D}_XFY) + h(X, FY)N + (D_{BX}u(Y))N - u(Y)BHX - J(B\bar{D}_XY + h(X, Y)N) = 0$$

$$B(\bar{D}_XFY) + h(X, FY)N + (D_{BX}u(Y))N - u(Y)BHX - JB(\bar{D}_XY) - h(X, Y)JN = 0$$

$$B(\bar{D}_XFY)+h(X,FY)N+(D_{BX}u(Y))N-u(Y)BHX-BF(\bar{D}_XY)$$

$$-u(\bar{D}_X Y) N + h(X, Y) BU = 0$$
 ...(2.7)

Tangential part from above equation (2.7) is given by

$$B(\overline{D}_X FY) - u(Y) BHX - BF(\overline{D}_X Y) + h(X, Y)BU = 0$$

or
$$B(\bar{D}_X F)Y = u(Y) BHX - h(X, Y) BU$$

$$(\overline{D}_X F) Y = u(Y) HX - h(X, Y) U$$

Normal part from equation (2.7) is given by

$$h(X, FY)N + (D_{BX}u(Y))N - u(\overline{D}_XY)N = 0$$

or
$$D_{BX}u(Y) - u(\bar{D}_XY) = -h(X, FY)$$

or
$$(\bar{D}_X u)Y = -h(X, FY)$$

REFERENCES

or

- Bhatt, L., Joshi, N. K. and Dube, K. K., Non Invariant Hypersurface of Kenmotsu Manifold, *Acta Ciencia Indica*, Vol. 25(2), 183-186 (1999).
- Pandey, S.B. and Pant, M., On HGF-Structure Metric Manifold, Journal of International Academy of Physical Sciences, Vol. 10, 45-68 (2006).
- Mishra, R.S., Hypersurfaces of almost hermite manifolds, Monograph No. 2, Tensor Society of India (1993).