ON TWO DIOPHANTINE EQUATIONS $2^x + 3^y = z^2$ AND $2^x + 7^y = z^2$

D. SARATH SEN REDDY

Asstt. Prof., Deptt. of Maths, Anurag College of Engineering, Aushapur, Ghatkesar, Medchal dist, Telangana

AND

D. GOPALA NAIDU REDDY

Assistant Professor, Department of Mathematics, PVKR Junior College, Karlapalem, Guntur (dist), (A. P.), India

RECEIVED: 19 March, 2018

In this paper, we show that the Two Diophantine Equations $2^x + 3^y = z^2$ and $2^x + 7^y = z^2$ have a unique solution (3, 0, 3) in non-negative integer.

KEYWORDS: Exponential Diophantine Equation, Catalan's Conjecture.

Introduction

In 2002, J. Sundor studied two Diophantine equations $3^x + 3^y = 6^z$ and $4^x + 18^y = 22^z$. After that D. Acu (2007) studied that the Diophantine equation $2x + 5y = z^2$. He found that this equation has exactly two solutions in non-negative integer $(x, y, z) \in \{(3, 03), (2, 1, 3)\}$. In (2011) A.S. Uvarnamani, A. Singta and S. Chotchaishit studied that the two Diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$. Inspired by [1] and [3] we study the Diophantine equation $2^x + 3^y = z^2$ and $2^x + 7^y = z^2$ have a common solution (3, 0, 3) where x, y, and z are non negative integers.

MAIN RESULTS

In this study, we use Catalan's Conjecture (see [4]). It is prove there that the only solution in integers a > 1, b > 1, x > 1 and y > 1 of the equation $a^x + b^y = 1$ is a = y = 3 and b = x = 2. Now we have the following theorems

Theorem 2.1: The Diophantine equation $2^x + 3^y = z^2$ has three solutions in non-negative integers.

Proof: From the Diophantine equation

we consider the following four cases

Case (i): x = 0 we have

Implies that

$$1 + 3^{y} = z^{2}$$

$$3^{y} = z^{2} - 1$$

$$3^{y} = (z - 1)(z + 1)$$

05/M018

Let
$$z-1=3^u$$
 ... (2)

Implies that $3^y = 3^u(z+1)$

$$z+1=3^{y-u} \qquad \dots (3)$$

(2)-(1) implies
$$2 = 3^u (3^{y-2u} - 1)$$
 ... (4)

(3) is true for u = 0, y = 1.

If u = 0 in (1), we get z - 1 = 1

$$z=2$$

Therefore in this case solution is (0, 1, 2)

Case (ii): If y = 0 we have

$$2^{x} + 1 = z^{2}$$

Implies that

$$2^{x} = z^{2} - 1$$

 $2^{x} = (z - 1)(z + 1)$

$$z-1=2^u$$

Let
$$z-1=2^{u}$$
 ... (5)
We get $z+1=2^{y-u}$... (6)

(5)-(4) implies
$$2 = 2^u [2^{y-2u} - 1]$$
 ... (7)

If u = 0 then there is no y satisfy (7)

It is impossible to find x if y = 0.

Case (iii): If $x \ge 4$, let x = 4 in (1) we get

$$16 + 3^y = z^2$$

Implies

$$3^y = z^2 - 16$$

$$3^{y} = (z-4)(z+4)$$
 ... (8)

Let
$$z - 4 = 3^{v}$$
 ... (9)

We get from (8)
$$Z + 4 = 3^{y-y}$$
 ... (10)

(10)-(9)
$$8 = 3^{\nu} [3^{\nu-2\nu} - 1]$$

If v = 0 we get y = 2 if v = 0 in (9) we get

$$Z-4=1, z=5$$

In this case solution for the given equation is (4, 2, 5).

Case (iv): If $x \ge 3$, let x = 3 we get from the equation (1)

$$8 + 3^{y} = z^{2} ... (11)$$

Implies

$$3^{y} = z^{2} - 8$$

$$3^y = (z - 2\sqrt{2})(z + 2\sqrt{2})$$

It is not a non negative integer case. So we can find the solution of (11), By trail we can get y = 0, z = 3.

The solution in this case is (3, 0, 3).

Theorem 2.2: The Diophantine equation $2^x + 7^y = z^2$ has three solutions in non-negative integers.

Proof: From the Diophantine equation
$$2^x + 7^y = z^2$$
 ... (12)

we consider the following four cases

Case (i): x = 0 we have

$$1+7^y=z^2$$

Implies that $7^y = z^2 - 1$

$$7^{y} = (z - 1)(z + 1)$$

Let
$$z - 1 = 7^u$$
 ... (13)

Implies that $7^y = 7^u(z+1)$

$$z + 1 = 7^{y-u}$$
 ... (14)

(13)-(14) implies
$$2 = 7^u (7^{y-2u} - 1)$$

It is impossible to find y

Therefore $x \neq 0$

Therefore in this case solution is (0, 1, 2)

Case (ii): If y = 0 we have $2^x + 1 = z^2$

Implies that
$$2^x = z^2 - 1$$

$$2^x = (z-1)(z+1)$$

Let
$$z-1=2^u$$
 ... (15)

We get
$$z + 1 = 2^{y-u}$$
 ... (16)

(15)-(16) implies
$$2 = 2^u [2^{y-2u} - 1]$$
 ... (17)

If u = 0 then there is no y satisfy (7)

It is impossible to find x if y = 0.

Case (iii): If $x \ge 5$, let x = 5 in (1) we get

$$32 + 7^y = z^2$$

Implies

$$7^y = z^2 - 32$$

$$7^{y} = (z - 4\sqrt{2}) (z + 4\sqrt{2}) \qquad \dots (18)$$

It is not a non negative integer case. So we can find the solution of (18), By trail we can get y = 2, z = 9.

In this case solution for the given equation is (5, 2, 9).

Case (iv): If $x \ge 3$, let x = 3 we get from the equation (1)

$$8 + 3^y = z^2 ... (11)$$

Implies

$$3^y = z^2 - 8$$

$$3^y = (z - 2\sqrt{2})(z + 2\sqrt{2})$$

It is not a non negative integer case. So we can find the solution of (11). By trail we can get y = 0, z = 3.

The solution in this case is (3, 0, 3).

CONCLUSION

In this paper we find a common solution for the two Diophantine equations $2^x + 3^y = z^2$ and $2^x + 7^y = z^2$ is (3, 0, 3).

REFERENCES

- 1. Suvarnamani, A., Singta, A. and Chotchaisthit, S., On two Diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$, Volume 1, 25-28 (2011).
- 2. Acu, D., On a diophantine equation $2^x + 5^y = z^2$, General Mathematics, Vol. 15, No. 4, 145-148 (2007).
- 3. David, M.B., Elementary Number Theory, 6th ed., McGraw-Hill, Singapore (2007).
- Kenneth, H.R., Elementary Number Theory and its Application, 4th ed., Addison Wesley Longman, Inc. (2000).
- Mihailescu, P., Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572, 167-195 (2004).
- 6. Mordell, L.J., Diophantine Equations, Academic Press, New York (1969).
- 7. Sandor, J., On a diophantine equation $3^x + 3^y = 6^e$, Geometric theorems, Diophantine equations, and arithmetric functions, *American Research Press Rehobot*, 4, 89-90 (2002).
- Sandor, J., On a diophantine equation 4^x + 18^y = 22^z, Geometric theorems, Diophantine equations, and arithmetric functions, American Research Press Rehobot, 4, 91-92 (2002).
- 9. Sierpinski, W., Elementary Theory of Numbers, Warszawa (1964).
- Silverman, J.H., A Friendly Introduction to Number Theory, 2nd ed., Prentice-Hall, Inc., New Jersey (2001).