HOMOMORPHISM, PARTIAL HOMOMORPHISM AND PAIR HOMOMORPHISM IN BE-ALGEBNRAS

GAUTAM KUMAR PANDEY, MD. ILYAS

Department of Mathematics, Gaya College, Gaya

AND

R.L. PRASAD

Department of Mathematics, Magadh University, Bodh Gaya

RECEIVED: 30 December, 2017

Here we have discussed some homomorphisms in BE-algebras. Concept of partial homomorphism and pair homomorphism in BE-algebras have been developed with suitable examples and properties.

KEYWORDS: BE–algebra, homomorphism, partial homomorphism, pair homomorphism.

2ntroduction

H. S. Kim and Y. N. Kim [1] introduced the concept of BE-algebra in 2006. Since then several related concepts have been developed and studied.

Definition (1.1): A BE-algebra is a system (X; *, 1) consisting of a non-empty set X, a binary operation "*" and a fixed element 1 satisfying the following conditions:-

- 1. (BE 1) x * x = 1
- 2. (BE 2) x * 1 = 1
- 3. (BE 3) 1 * x = x
- 4. (BE 4) x * (y * z) = y * (x * z)

for all $x, y, z \in X$.

Definition (1.2): Let (X; *, 1) and (Y; o, e) be BE-algebras and let $f: X \to Y$ be a mapping. Then f is called a homomorphism if f(x * y) = f(x) of (y) for all $x, y \in X$.

Some homomorphisms

 \mathbf{T} he following result have been established in [3, 2017].

Theorem (2.1): Let S be an universe and let X be the set of all fuzzy sets defined on S. Let 1^* the 0^* be the fuzzy sets defined on S as

$$1^*(x) = 1$$
 and $0^*(x) = 0$ for all $x \in S$.

Also for $f, g \in X$, we define f = g iff f(x) = g(x) for all $x \in S$.

For $f, g \in X$ a binary operation "o" is defined as

$$(f \circ g)(x) = \min \{f(x), g(x)\} + 1 - f(x)$$
$$= (f \land g)(x) + 1 - f(x).$$

Then $(X; o, 1^*)$ is a BE-algebra with zero element 0^* .

Note (2.2): For $\alpha \in [0, 1]$, the constant fuzzy set $\alpha(t) = \alpha$ for all $t \in S$ is identified as α .

Definition (2.3): Let x be a fixed element of S. For $\delta \in X$. Let $\delta(x) = \alpha$. We consider the constant mapping $\alpha: S \to X$ defined as $\alpha(t) = \alpha$ for all $t \in S$. Let $f_x: X \to X$ be defined as

$$f_x(\delta) = \alpha = \delta(x).$$
 ... (2.1)

We prove that

Theorem (2.4): f_x is a homomorphism on X for every $x \in S$.

Proof: Let δ_1 , $\delta_2 \in X$ and let $\delta_1(x) = \alpha$, $\delta_2(x) = \beta$. Then

$$f_x(\delta_1) = \alpha, f_x(\delta_2) = \beta.$$

Let f_x (δ_1 o δ_2) = γ . Then

$$\gamma(x) = (\delta_1 \circ \delta_2)(x)$$

= min $\{\delta_1(x), \delta_2(x)\} + 1 - \delta_1(x)$
- min $\{\alpha, \beta\} + 1 - \alpha$
= 1 or $\beta + 1 - \alpha$

according as $\alpha \leq \beta$ or $\beta < \alpha$.

This means that

$$f_x(\delta_1 \circ \delta_2) = 1^* \text{ or } \beta + 1 - \alpha.$$
 ... (2.2)

according as $\alpha \leq \beta$ or $\beta < \alpha$.

Again,
$$f_x(\delta_1) \circ f_x(\delta_2) = \alpha \circ \beta = 1^* \text{ or } \beta + 1 - \alpha.$$
 ... (2.3)

according as $\alpha \leq \beta$ or $\beta < \alpha$.

From (2.2) and (2.3) it follows that

$$f_x(\delta_1 \circ \delta_2) = f_x(\delta_1) \circ f_x(\delta_2),$$

Hence f_x is a homomorphism.

Example (2.5): Let $S = \{a, b, c, d, e\}$ and $X = \{\phi, A, B, C, D, E, F, S\}$

where $A = \{a, b\}$, $B = \{a, b, c\}$, $C = \{c\}$, $D = \{c, d, e\}$, $E = \{d, e\}$, $F = \{a, b, d, e\}$; $S \equiv 1$, $\phi \equiv 0$.

For $L, M \in X$, we define a binary operation "o" as

$$L \circ M = L^c U M$$
.

Then Cayley table for this operation 'o' be given by

Table 2.1 o S A B C D E F 0 S S A B C D E F 0 A S S S D D D S D B S F S D D E F E C S F S S S F F F D S A B B S F F A E S B B C D D S C O S S S S S S S S								
0	S	A	B	C	D	E	F	0
\boldsymbol{S}	S	A	B	C	D	E	F	0
\boldsymbol{A}	S	S	S	D	D	D	S	D
B	S	F	S	D	D	E	F	E
C	S	F	S	\boldsymbol{S}	S	F	F	F
D	S	\boldsymbol{A}	B	B	S	F	F	\boldsymbol{A}
E	S	B	B	B	S	S	S	B
F	S	B	B	C	D	D	S	C
0	S	S	S	S	S	S	S	S

Then (X; o, S) is a BE-algebra with zero element 0 [5].

For $a \in S$, let $g_a : X \to X$ be a mapping defined as $g_a(L) = \text{smallest}$ element of X containing L and a.

Then,
$$g_a(A) = A$$
, $g_a(B) = B$, $g_a(C) = B$, $g_a(D) = S$, $g_a(E) = F$, $g_a(F) = F$, $g_a(S) = S$, $g_a(0) = A$.

Now we see that

$$g_a(A \circ B) = g_a(S) = S$$
, $g_a(A) \circ g_a(B) = A \circ B = S$;
 $g_a(A \circ D) = g_a(D) = S$, $g_a(A) \circ g_a(D) = A \circ S = S$;
 $g_a(C \circ E) = g_a(F) = F$, $g_a(C) \circ g_a(E) = B \circ F = F$;
 $g_a(D \circ 0) = g_a(A) = A$, $g_a(D) \circ g_a(0) = S \circ A = A$;
 $g_a(E \circ 0) = g_a(B) = B$, $g_a(E) \circ g_a(0) = F \circ A = B$.

For other elements it can be proved that

$$g_a(L \circ M) = g_a(L) \circ g_a(M)$$
 for $L, M \in X$.

So g_a is a homomorphism.

Partial Homomorphism

Definition (3.1): Let (X; *, 1) be a BE-algebra and let $f: X \to X$. If there exists a subalgebra M of X such that

$$f(x * y) = f(x) * f(y)$$

for all $x, y \in M$ but $f(x * y) \neq f(x) * f(y)$ for some $x, y \in X$, then we say that f is a partial homomorphism on X with respect to subalgebra M.

Example (3.2): Let (X, T) be a topological space where T contains only clopen (closed and open) subsets. For $A, B \in T$ we define a binary operation 'o' on T as

$$A \quad o B = A^c \cup B. \qquad \dots (3.1)$$

Then (T; o, 1) is a BE-algebra with zero element $0 = \emptyset$ and 1 = X[5].

For a fixed $a \in X$, let S be the collection of those elements of T which contain a. Now $L, M \in S \Rightarrow L \circ M = L^c \cup M \in S$, since $L^c \cup M$ contains a. So S is a BE-subalgebra of T.

Let $f_a: T \to T$ be a mapping defined as

$$f_a(L) = L$$
 or L^c according $a \in L$ or $a \notin L$.

Let $L, M \in S$, we have

$$f_a(L \circ M) = f_a(L^c \cup M) = L^c \cup M$$

since $a \in M$. Also in this case

$$f_a(L) = L$$
, $f_a(M) = M$ and $f_a(L)$ of $f_a(M) = L$ o $M = L^c \cup M$.

Thus $f_a(L \circ M) = f_a(L) \circ f_a(M)$ is satisfied for all $L, M \in S$.

Again, $a \notin L$ and $a \in M \Rightarrow f_a(L \circ M) = f_a(L^c \cup M) = L^c \cup M$, since $a \in L^c \cup M$.

In this case, $f_a(L) = L^c$ and $f_a(M) = M$ which gives $f_a(L)$ of $f_a(M)$

$$=L^{c} \circ M = L \cup M$$
.

So $f_a(L \circ M) \neq f_a(L) \circ f_a(M)$ for some $L, M \in T$.

This means that f_a is a partial homomorphism in T with respect to subalgebra S.

Pair homomorphism

Definition (4.1): Let (X; *, 1) and (Y; o, e) be BE-algebras.

Let $f: X \to Y$ and $g: X \to Y$ be mappings. The pair (f, g) is said to be pair homomorphism if

$$f(x * y) = g(x) \circ g(y)$$
 ... (4.1)

for all $x, y \in X$.

Example (4.2): In the above definition, let f(x) = e for all $x \in X$ and $g(t) = a \in Y$ for all $t \in X$, then the pair (f, g) is pair homomorphism. For,

$$f(x * y) = e = g(x) \circ g(y)$$

for all $x, y \in X$.

Note (4.3): Pair (f, g) is pair homomorphism

 \Rightarrow Pair (g, f) is pair homomorphism.

In the above example $g(x * y) = a \neq e = f(x) \circ f(y)$.

Note (4.4): If g(1) = e then f coincides with g and f is a homomorphism. For $x \in X$ we have

$$f(x) = f(1 * x) = g(1) o g(x)$$

= $e o g(x)$
= $g(x)$.

Note (4.5): From the above example it also follows that in pair (f, g) g may not be unique for a mapping f.

Example (4.6) : Let (X; *, 1) be a BE-algebra with zero element 0 and let $Y = X \times X$.

Then $(Y; \bigcirc, (1, 1))$ is a BE-algebra [4, 2014] with zero element (0, 0) where \bigcirc is defined as

$$(x_1, x_2) \odot (y_1, y_2) = (x_1 * y_1, x_2 * y_2).$$

We consider mappings $P_1, Q_1: Y \to Y$

defined as $P_1(x_1, x_2) = (1, x_2)$ and $Q(x_1, x_2) = (0, x_2)$ for all $(x_1, x_2) \in Y$. Then

$$P_{1}((x_{1}, x_{2}) \odot (y_{1}, y_{2})) = P_{1}(x_{1} * y_{1}, x_{2} * y_{2})$$

$$= (1, x_{2} * y_{2})$$

$$= (0, x_{2}) \odot (0, y_{2})$$

$$= Q_{1}(x_{1}, x_{2}) \odot Q_{1}(y_{1}, y_{2})$$

for all $(x_1, x_2), (y_1, y_2) \in Y$. So (P_1, Q_1) is a pair homomorphism.

Lemma (4.7): Let $f, g: (X; *, 1) \rightarrow (Y; o, e)$ be a mapping such that pair (f, g) is a homomorphism. Then

$$f(1) = e;$$

 $x \le y \implies g(x) \le g(y);$

Proof: (a) We have $f(1) = f(1 * 1) = g(1) \circ g(1) = e$.

(b) Also
$$x \le y \Rightarrow x * y = 1$$

$$\Rightarrow f(x * y) = f(1) = e$$

$$\Rightarrow g(x) \circ g(y) = e$$

$$\Rightarrow g(x) \le g(y).$$

Definition (4.8): Let (f, g) be a pair homomorphism from a BE- algebra (X; *, 1) into a BE-algebra (Y; o, e). Then Ker f is defined as Ker $f = \{x \in X : f(x) = e\}$.

Theorem (4.9): Let (X; *, 1) and (Y; o, e) be BE-algebra and let $f, g: X \to Y$. Let (f, g) be a pair homomorphism. Then

- (a) $x \in \text{Ker } f \text{ iff } g(x) = g(1);$
- (b) Ker f is a BE-sub algebra of (X; *, 1).

Proof: (a) Let (f, g) be a pair homomorphism and let $x \in \text{Ker } f$.

Then $e = f(x) = f(1 * x) = g(1) \circ g(x)$. This implies $g(1) \le g(x)$.

Again from lemma (4.7) (b) it follows that

$$x \le 1 \Rightarrow g(x) \le g(1)$$
. So $g(x) = g(1)$.

Conversely, suppose that

$$g(x) = g(1)$$

 $f(x) = f(1 * x) = g(1) o g(x)$
 $= g(1) o g(1)$
 $= e$.

Then

So $x \in \text{Ker } f$.

(b) Let $x, y \in \text{Ker } f$. Then from above g(x) = g(y) = g(1). Also $f(x^*y) = g(x)$ o g(y) = g(1) o g(1) = e. So $x^*y \in \text{Ker } f$. This proves that Ker f is a BE-algebra.

REFERENCES

- Kim, H. S. and Kim, Y. H., On BE-algebras, Sci. Math. Japon, 66, No. 1, pp. 113-116 (2007).
- Kim, K.H., A Note on BE–algebras, *Sci. Math. Japon*, **72**, No. **2**, pp. 127–132 (2010). Pandey, Gautam Kumar, Ilyas, Md. and Prasad, R.L., A class of BE–algebras, *Acta Ciencia* Indica, Vol. XLIII M, No. 1, pp. 47-53 (2017).
- 4. Pathak, K., Sabhapandit, P. and Chetia, B.C., Cartesian product of BE/CI-algebras with Essences and Atoms, Acta Ciencia Indica, Vol. XL M, No. 3, pp. 271-279 (2014).
- 5. Rani, Rashmi, BE-algebras with zero element, Acta Ciencia Indica (to be published).